简介:本文首先利用共轭梯度及矩阵性质,构造迭代算法,并证明算法的收敛性,同时对该算法当方程相容时收敛到问题的极小范数解进行证明.然后,对该算法进行细微修改,应用于相应的最佳逼近问题.最后给出相关的数值实例,验证算法的有效性.
简介:M.Randic首先引入了Wiener.Hosoya指标,该指标可用于对分子的结构,性质和活跃性等方面进行研究.有且仅有一个顶点的度大于或等于3的树称为spider.本文对直径为d,且具有最大Wiener-Hosoya指标的spider进行了刻划.
简介:本文在经典风险模型基础上,把索赔到达过程Nt加以推广为更新过程。且在保单到达非均匀的前提下,把保单到送过程推广为更新过程Mt,得到有限时间t孕余的瞬时分布ψ(u,θ0,t,α),然后求得时刻t的生存概率ψ(t,u,θ0)。