简介:证明了一类整系数齐次线性递归数列,当项数n是素数时,第n项与第1项的n次方模n同余.Fermat小定理,以及与Fibonacci数列、Perrin数列有关的一些定理,都可以看作是这一定理的推论.
简介:主要利用Leray-Schauder不动点理论研究Lienard方程周期边值问题{(x)+f(x)(x)+g(t,x)=e(t)x(0)=x(T),(x)(0)=(x)(T)的正解及多个正解的存在性.
简介:研究Kac方程的初值问题.证明了该类方程存在唯一的全局分布解.并且使用一种新的线性化方法证明了该类方程的解具有相应的多项式衰减性.
简介:本文主要讨论了Schnakenberg方程组的初值问题,首先用多重尺度方法求得Schnakenberg方程组的一阶近似解,然后利用非线性的Gronwall不等式对所求结果进行误差估计。
简介:本文研究等离子体中的高功率超短激光通道问题中出现的一类非线性Schrodinger方程,利用变分原理,把一类非线性Schrodinger方程转换为变分问题,再利用喷泉定理及对偶喷泉定理证明一类非线性Schrodinger方程存在驻波解.