简介:随着工业化、城镇化进程的不断加快,我国电力需求量将持续上升。电力的充足供应是我国经济稳步发展的重要保证,故合理准确的对电力需求进行分析及预测具有重要的现实意义。基于此,分析我国电力需求现状,利用通径分析筛选电力消费需求的核心驱动因素。在模型选择的基础上,基于单变量(ETS、ARIMA模型)和多变量(情景分析)两个维度进行电力需求量分析及预测。结果表明:GDP每提高1%使得电力需求量提高0.5249%;工业化水平每提高1%使得电力需求量提高2.2146%,城镇化水平每提高1%使电力需求量相应提高1.0076%。“十二五”末中国电力消费需求量将近61425.96KW/h,2020年中国电力消费需求将近81410.10KW/h。
简介:为解决一次性n人囚徒困境中局中人如何走出困境的问题,引进了背叛惩罚函数及其严厉度和参与人的背叛愿意度等概念,并用数学论证法证明了如下结果:(1)参与人的背叛愿意度都不超过1。(2)背叛愿意度越大,这个参与人越愿意背叛;(3)背叛愿意度为0零时,这个参与人是否背叛其赢得一样;(4)当背叛愿意度取负数时,其绝对值越大,参与人的合作积极性越大。得到博弈结果的判定法:(1)计算各参与人的背叛愿意度。(2)若至少有一个参与人愿意背叛,则全体参与人都背叛。(3)若全体参与人都愿意合作,则合作成功。例子表明,本结果在理论上可有效地解决中局中人如何走出困境和在给定惩罚机制下博弈结果的预测问题。
简介:设P(G,λ)是图的色多项式。如果对任意使P(G,λ)=P(H,λ)的图H都与G同构.则称图G是色唯一图.这里通过比较t+1色类的色划分数目,讨论了由Koh和Teo在文献[1]中提出的问题(若│ni-nj│≤2.当min(n1,n2,…,nt)充分大时,完全t部图K(n1,n2,…,nt)是否是色唯一图?)。改进了文献[5]中的结果。证明了若∑1≤i≤tai^2=T.min{n+a1,n+a2,….nt+at,n-1}≥(T+1)/2,则K(n+a1.n+a2,….n+a,)是色唯一图(其中ai是实数,n+ai是正整数)。从而证明了若│ni-nj│≤k(i.j=1,2.…,t).min{n1.n2,…,nt}≥tk^2/8+1.则K(n1,n2,…nt)是色唯一图。
简介:随机需求库存-路径问题(StochasticDemandInventoryRoutingProblem,SDIRP)是典型的NP难题,也是实施供应商管理库存策略过程中的关键所在。文章通过引入固定分区策略(FixedPartitionPolicy,FPP),将SDIRP分解为若干个独立的子问题,并采用拉格朗日对偶理论以及次梯度算法确定最优的客户分区。在此基础上证明了各子问题的最优周期性策略由分区内各客户的(T,S)库存策略以及相应的最优旅行商路径构成,进而给出了客户需求服从泊松分布时求解最优(T,S)策略各参数的方程组,并设计了求解算法。最后,通过数值算例讨论了上述策略以及算法对于解决SDIRP的有效性。
简介:本文通过将定性分析与关系图描述相结合,提出H1:城镇化对经济发展具有显著正向促进作用、H2:城镇化可通过消费渠道影响经济发展、H3:城镇化可通过投资渠道影响经济发展、H4:城镇化可通过出口渠道影响经济发展四项研究假设。进一步,根据地区实际经济发展水平,将我国划分为发达与欠发达两类地区。设定经济发展变量PGDP为被解释变量,城镇化变量UR、城镇化与投资交互项变量UR×PFI、城镇化与消费交互项变量UR×HC和城镇化与出口交互项变量UR×PE为被解释变量,采用2000—2012年我国31个省市区的面板数据。基于单位根检验、协整关系检验、F检验、Hausman检验,建立个体固定效应模型,验证假设H1~H4在全国及两类地区是否成立。结果表明:H1、H2、H3假设在全国及两类地区均成立;H4假设仅在欠发达地区成立。基于研究结论,本文提出了相应的启示。
简介:针对政府补贴难以激励战略性新兴产业形成创新驱动力的问题,以新能源汽车产业为例,构建了一个旨在促进企业技术研发的政府创新补贴策略分析模型。假设产业呈现明显的创新驱动特征,模型分别针对政府理性决策与有限理性决策的情况,对政府创新补贴及企业创新投入策略进行了博弈均衡分析,并讨论了技术创新环境的改善对最优策略及局中人收益的影响。结果表明,在创新驱动模式下,企业最优创新投入比例对政府补贴水平不敏感,且过高的补贴可能挤出企业创新投入,容易形成企业套利空间。此外,改善技术创新环境对强化企业市场主体地位,弱化政府管制对市场的干预具有积极作用。