简介:[目的/意义]准确高效地获取马匹体尺信息是马产业现代化进程中的关键环节.传统的人工测量方法耗时长、工作量大,且会对马匹造成一定应激反应.因此,实现准确且高效的体尺参数自动测量对于制定蒙古马早期育种计划至关重要.[方法]选择Azure Kinect深度相机获取蒙古马双侧RGB-D数据,以YOLOv8n-pose为基础,通过在C2f模块中引入可变形卷积(Deformable Convolution v2,DCNv2),同时添加洗牌注意力机制(Shuffle Atten-tion,SA)模块和优化损失函数(SCYLLA-IoU Loss,SIoU)的方法,利用余弦退火法动态调整学习率,提出一种名为DSS-YOLO(DCNv2-SA-SIoU-YOLO)的模型用于蒙古马体尺关键点的检测.其次,将RGB图中的二维关键点坐标与深度图中对应深度值相结合,得到关键点三维坐标,并实现蒙古马点云信息的转换.利用直通滤波、随机抽样一致性(Random Sample Consensu...
简介:[目的/意义]大规模肉羊畜舍人工消毒存在费时费力、覆盖不全和消毒不彻底的问题,为保持畜舍卫生和肉羊健康,本研究提出一种羊场自动导航喷药机器人.[方法]从硬件、语义分割模型和控制算法3个方面设计了自动导航喷药机器人.硬件部分包括履带底盘、摄像头和折叠式喷药装置.语义分割模型部分通过引入压缩通道网络注意力(Squeeze-and-Excitation Network,SENet)和基于场景改进的十字交叉注意力(Criss-Cross Attention,CCA)模块,提出一种双注意力ENet语义分割模型(Double Attention ENet,DAENet).在控制算法方面,针对机器人在面对岔路时无法控制行进方向的问题,利用模拟真实道路的方法,在羊舍外的道路上绘出车道线,提出了道路中心点识别和车道线中心点识别两种算法来计算机器人行进过程中的导航点.为了实现上述两种算法,使用了两台摄像头并设计了摄像头切换算.
简介:[目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰.然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间.本研究旨在通过设计关键点生成网络从猪体点云中提取出各体尺测量所需关键点.在降低显存资源需求的同时提高测量关键点定位效果,提高体尺测量的效率和精度.[方法]针对猪三维表面点云进行体尺测量,提出了一种定位猪体尺关键点的模型Pig Back Transformer.模型分为两个模块,分别设计了两种改进的Transformer自注意力编码器,第一模块为全局关键点模块,首先设计了一种猪背部边缘点提取算法用于获取边缘点,再使用edge encoder编码器以边缘点集合作为输入,edge encoder的edge attention中加入了边缘点和质点的偏移距离信息;第二模块...
简介:[目的/意义]奶牛跛行检测是规模化奶牛养殖过程中亟待解决的重要问题,现有方法的检测视角主要以侧视为主.然而,侧视视角存在着难以消除的遮挡问题.本研究主要解决侧视视角下存在的遮挡问题.[方法]提出一种基于时空流特征融合的俯视视角下奶牛跛行检测方法.首先,通过分析深度视频流中跛行奶牛在运动过程中的位姿变化,构建空间流特征图像序列.通过分析跛行奶牛行走时躯体前进和左右摇摆的瞬时速度,利用光流捕获奶牛运动的瞬时速度,构建时间流特征图像序列.将空间流与时间流特征图像组合构建时空流融合特征图像序列.其次,利用卷积块注意力模块(Convolutional Block Attention Module,CBAM)改进PP-TSMv2(PaddlePad-dle-Temporal Shift Module v2)视频动作分类网络,构建奶牛跛行检测模型Cow-TSM(Cow-Temporal Shift Module).最后,分别在不同输..
简介:[目的/意义]牛的体尺参数是反映牛身体发育状况的关键指标,也是牛选育过程的关键因素.为解决规模化肉牛牧场复杂环境对肉牛体尺的测量需求,设计了一种图像采集装置以及体尺自动测量算法.[方法]首先搭建肉牛行走通道,当肉牛通过通道后进入限制装置,用英特尔双目深度相机D455对牛只右侧图像进行RGB与深度图的采集.其次,为避免复杂环境背景的影响,提出一种改进后的实例分割网络Mask2former来对牛只二维图进行前景轮廓提取,对轮廓进行区间划分,利用计算曲率分析方法找到所需体尺测点.然后,将原始深度图转换为点云数据,对点云进行点云滤波、分割和深度图牛只区域的空值填充,以保留牛体区域的点云完整,从而找到所需测点并返回到二维数据中.最后,将二维像素点投影到三维点云中,利用相机参数计算出投影点的世界坐标,从而进行体尺的自动化计算,最终提取肉牛体高、十...
简介:摘要 : 农业模型、农业人工智能及数据分析等技术贯穿于智慧农业的信息感知、信息传输、信息处理与控制全过程,是智慧农业的核心技术。为进一步明晰农业模型的内涵和作用,促进农业模型进一步研究及应用,推动智慧农业健康、稳定和可持续发展,本研究采用系统分析、比较及关系框图等方法,分析了农业模型的内涵,阐述了农业模型和智慧农业要素与过程的关系,明确了农业模型的作用并附以应用案例,比较了农业模型的国内外重要发展动态与趋势。国内外农业模型研究与应用重要进展比较表明,农业模型研究应用需要考虑农业生物要素的 4个水平、农业环境要素的 6个尺度、农业技术与农业经济要素的 6个层次并采用相应方法进行,农业模型环境要素空间多尺度研究应用有较大发展潜力;农业模型与分子遗传学、感知技术及人工智能技术结合,农业模型研究应用的公私有组织协作,粮食安全挑战将成为农业模型进一步发展的重要推动力,且需更注重将各种农业系统模拟、数据库、和谐性与开放数据及决策支持系统相连接。中国农业模型研究与应用已形成具有中国特色的作物模型系列,也融入农业模型的互比较与改进、智慧农业等世界潮流,需要抢抓机遇,加快发展。农业模型是农业系统要素内及要素间关系的定量化表达,是农业科学定量与综合的重要方法,具有认识论价值,它与感知技术的结合可以在智慧农业数据获取与处理中发挥不可或缺的作用,成为信息农业技术落地应用的重要桥梁和纽带。
简介:摘要 : 太阳能杀虫灯物联网( SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着 SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了 SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络( WSNs)中的体现,并进一步对 WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的 WSNs故障诊断方法。此外,还探讨了 SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的 WSNs故障诊断调试工具,如 Sympathy、 Clairvoyant、 SNIF和 Dustminer。最后,强调了 SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于 SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。
简介:摘要 : 植被分类是高光谱影像分类中的特定应用问题,光谱特征和空间特征是植被分类中常用的两类特征,比较这两类特征的性能,对实际植被分类应用中选择合适的特征类型或两者的有效结合具有指导意义。用主成分分析( PCA)提取光谱特征时,常选择前几个主成分( PCs)作为光谱特征,虽然它们包含较大的信息量但并不能保证较高的类别可分性和分类正确率,针对这一问题本研究提出了一种混合特征提取方法,对高光谱影像在 PCA的基础上用改进的基于分散矩阵的特征选择方法选出具有较高类别可分性的 PCs用于后续分类。利用一景 AVIRIS高光谱植被影像,从分类精度的角度,首先比较了所提出的混合特征提取方法和原始 PCA、独立主成分分析( ICA)及线性判别分析( LDA) 3种常用子空间特征提取方法在高光谱影像植被分类中的性能。试验结果表明所提出的混合特征提取方法在研究中数据集 1和 2上均获得了最高的总体分类正确率,分别为 82.7%和 86.5%。与原始 PCA相比,本研究提出的混合特征提取方法的总体分类正确率,在数据集 1和 2上分别提高了 1.5%和 2.5%。由此阐明了所提出的混合特征提取方法在高光谱植被分类中的有效性。对光谱特征和空间特征在高光谱影像植被分类性能的比较中,总体上空间特征获得的分类正确率比光谱特征高,特别是 Gabor特征,在两个数据集上均获得了最高的总体分类正确率分别为 95.5%和 96.7%。由此表明空间特征较光谱特征在高光谱影像植被分类中更具优势。本研究结果为后续改进空 -谱特征方法及其两者有效结合,进一步提高植被分类正确率提供了参考。
简介:摘要 : 纳米材料具有特殊的尺寸效应和优异的光电性质,已在传感分析中得到高度重视和广泛应用,大幅提高了传感分析技术的性能。近年来,智慧农业发展迅速,农产品质量安全作为农业生产的重要组成部分,对农业传感技术的灵敏度、稳定性和检测通量等指标要求越来越高。本综述简要阐述了几种常用的纳米材料的性质和特点,包括碳基纳米材料、金属纳米材料和金属 -有机框架材料等。重点论述了基于纳米材料的化学传感、生物传感、电化学传感和光谱传感等常用传感分析技术和器件,以及纳米传感分析技术在农产品质量安全,尤其在克伦特罗和三聚氰胺等危害物 ,甲硝唑、二噁英类化合物 ,违禁添加物 ,真菌毒素,锌、镉、铅等目标物,丙烯酰胺、呋喃类、硝基呋喃类抗生素监测等方面的应用。纳米材料的制备和修饰技术扔需要进一步提升,多目标、高通量纳米传感器件在实际应用中的价值广受关注,在线传感分析在农产品质量安全智慧监控方面有迫切需求需要快速、实时、在线监测。
简介:摘要 : 受经济和气候驱动,长江经济带水田空间格局发生了显著变化,影响区域粮食安全与生态安全。本研究基于 1990-2015年土地利用遥感监测数据,利用 GIS的空间分析功能,探究长江经济带水田空间格局动态变化特征,采用当量因子法计算生态系统服务价值( ESV),分析了水田变化的综合影响。结果表明: 1) 1990-2015年长江经济带水田规模持续缩减,共减少了 17390km2,减幅呈增长态势具有显著地域差异,长江中上游与下游的水田减幅相差约为 9.56%。其中下游减幅较大,水田占区域比例随之降低,中上游恰好相反。 2)由于经济建设及水产养殖的发展,水田主要转化为建设用地和水系,水田主要由水系、旱地和湿地等转化而来。长江三角洲城市群、长江中游及成渝城市群的水田变化最为剧烈,建设用地侵占水田扩张的现象分布广泛,水田转为水系主要在两湖平原局部地区。 3)水田与其他生态系统的转化对 ESV是正影响,水田转为水系对此贡献最大,其转化规模决定了不同时期 ESV净增量的大小,水系转化为水田损失的价值最多,建设用地侵占水田次之。不同市域的水田变化情况不一致,因此 ESV增减情况具有明显差异。 4)生态系统服务中水文调节、水资源供给增强的同时,食物生产、气体调节受到严重损害,与水资源规模扩大和水田资源大量流失有直接关系。研究结果有助于揭示长江流域水田的时空变化过程及其对各项生态系统服务的影响,可为区域土地利用规划、农业政策与生态可持续发展提供理论支持。