学科分类
/ 1
8 个结果
  • 简介:针对日益受到关注的液体晃动问题,提出了一种基于浅水波理论的研究方案.该方案采用浅水波理论而非势流理论导出系统控制方程,并通过哈密顿体系表达;利用中心有限差分法和Stormer-Yerlet算法进行空间和时间离散;模拟了不同初值条件下的液体晃动情况并对比分析了影响系统非线性响应的主要因素.结果表明,基于浅水波理论能有效解决液体晃动问题;与Euler格式对比,Stormer-Verlet算法精度较高;除共振外对于系统非线性响应的影响容器初始位移比初始速度更显著;非共振情况一定条件下,充液容器运动过程中液体晃动能起到阻尼作用.

  • 标签: 液体晃动 浅水波理论 初值问题 数值模拟 非线性
  • 简介:基于拉格朗日描述的柔性多体系统动力学理论,采用绝对节点坐标有限元方法描述液体大变形运动,开展铁路液罐车内液体晃动模拟研究.本方法能够模拟液体自由表面的连续性变化,并适用于研究具有复杂外形容器的内部液体晃动问题.基于流体力学牛顿体基础理论,推导液体粘性方程和满足体积不可压缩的条件方程;采用基于绝对节点坐标方法描述的实体单元进行液体网格划分;采用罚函数方法描述液体与罐体之间的接触关系,组建液体-罐体耦合多体系统动力学方程.仿真计算液罐车内液体的横向和纵向晃动行为,发现液体自由表面形状呈非线性变化,不同断面处的高度和形状不同.

  • 标签: 液罐车 柔性多体系统 绝对节点坐标方法 液体晃动
  • 简介:针对我国某一型号大型卫星液体燃料Cassini贮箱(腰为圆柱,两底为半球),应用有限元方法研究了微重环境下液体的小幅晃动问题和横向受迫晃动问题,采用Galerkin方法得到了系统的有限元离散方程;得到了晃动固有频率和等效力学模型参数.针对周期脉冲激励,推导了液体作用于贮箱壁的晃动力和晃动力矩计算公式并给出了数值计算结果和分析结论.

  • 标签: 微重力 液体晃动 等效力学模型 有限元 周期脉冲激励
  • 简介:针对俯仰运动贮箱中液体的晃动用变分原理建立了一类新的Lagrange函数,以此为基础可以解析方式来研究俯仰运动贮箱中液体的非线性晃动.首先将速度势函数φ在自由液面处作波高函数η的Taylor级数展开,从而导出自由液面运动学和动力学边界条件非线性方程组;然后用谐波平衡法(HBM)假设其解为各次主导谐波叠加的形式,并代入方程组中得到含有未知系数相应多个代数方程式;最后用Broyden法对代数方程组求解.以无挡板开口二维、刚性矩形贮箱为例,研究了液体的大幅晃动,就液体晃动的幅值而言,在一定激励频率范围内,理论计算值与试验结果吻合较好,同时液面波高出现明显的零点漂移现象.

  • 标签: 矩形贮箱 非线性晃动 谐波平衡法 LAGRANGE函数 动力学模型 晃动控制方程
  • 简介:有限单元法被广泛的采用来描述柔性体的弹性变形,然而有限元节点坐标数目庞大,将会给动力学方程求解带来巨大的计算负担.如何降低柔性体的自由度,是当前柔性多体系统动力学研究的一个重要命题.本文以中心刚体-柔性梁系统为例,采用Krylov方法和模态方法进行降价.然后分别采用有限元全模型、Krylov阶模型和模态阶模型,对中心刚体-柔性梁进行刚-柔耦合动力学仿真.仿真结果表明,与采用模态阶方法相比,采用Krylov模型阶方法只需要较低的自由度,就可以得到与采用有限元方法完全一致的结果.说明Krylov模型阶方法能够有效的用于柔性多体系统的模型降价研究.

  • 标签: 柔性梁 刚柔耦合 模型降阶 动力学仿真
  • 简介:首先基于Euler-Bernoulli原理,建立了一柔性悬臂梁撞击系统的动力学方程,并给出了模态分析方法;然后在若干基本假定和定义的基础上,利用Karhunnen-Loève展开这一正交分解手段,给出了体现动力系统主要特征的阶模型,可将系统的本征值进行新的表述;最后将所提方法应用于柔性悬臂梁撞击系统的阶分析过程中,并给出了相应数值例题.结果表明:本方法可以用少量的模态准确模拟可控系统的动力学特性,可为系统控制研究提供基础.

  • 标签: 降阶方法 撞击 ve 柔性梁 柔性悬臂梁 动力学方程
  • 简介:提出了基于模糊逻辑控制扭矩分配策略,建立了各功能组件模型.并利用ADVISOR2002仿真平台。完成了该模糊逻辑扭矩控制策略和电气辅助控制策略仿真比较.结果表明,本文提出的模糊逻辑控制策略对提高混合动力汽车的动力性和燃油经济性。改善尾气的排放有明显的作用.

  • 标签: 混合动力汽车(PHEV) 扭矩管理策略 模糊逻辑 建模 仿真
  • 简介:由于一类双悬臂含间隙振动系统具有典型非光滑特性和有明显的非线性,这直接导致了系统发生分又与混沌现象的可能性.为此针对该系统的混沌现象,利用基于能量的开环控制策略,构造有界控制器对混沌行为进行控制,混沌运动可被引导到稳定的目标周期轨道,并对控制的收敛速度进行分析,数值模拟结果表明了该控制策略的有效性与可行性,可为碰振系统的优化设计,振动控制和安全运行提供了理论参考.

  • 标签: 非光滑特性 分叉 混沌 碰振系统