简介:本文在Birkhoff框架下,采用离散变分方法研究了非Hamilton系统-Whittaker方程的数值解法,并通过和传统的Runge—Kutta方法进行比较,说明了在Birkhoff框架下研究非Hamilton系统可以得到更加可靠和精确的数值结果.
简介:基于sinh-Gordon方程的椭圆函数解,构造新的试探解来扩展sinh-Gordon方程展开法.利用该方法研究了KdV-mKdV方程,双sine-Gordon方程和BBM方程,获得了这些方程的新Jacobi椭圆函数解.该方法也能用来求解其他数学物理中的非线性演化方程.
简介:本文利用改进的齐次平衡法,首先得到了带强迫项的变系数KdV方程的多孤立波解,然后借助此解得到了强迫KdV方程的多孤立波解.最后作为应用例子,利用图形分析方法分析了Rossby孤立波的相互作用,指出了影响Rossby孤立波相对幅度、相位、传播方向及平衡位置的主要原因.
简介:应用动力系统分岔理论和定性理论研究了一类非线性Degasperis-Procesi方程的行波解及其动力学性质,并结合可积系统的特点,利用哈密尔顿系统的能量特征,通过Maple软件绘出其相轨图,再根据行波与相轨道间的对应关系,揭示了不同类型的行波解间的转变与参数变化的关系,并且给出了不同行波间相互转换的参数分岔值,从根本上解释了Peakon产生的原因,数值模拟验证了该方法的正确性,最后给出了相应行波解的表达式。
简介:本文中,我们讨论了含参量分数阶微分系统的基本分岔,即跨临界分岔、折叠分岔与音叉分岔.首先,根据分数阶Lyapunov方法,讨论了含参量分数阶微分系统的稳定性,并给出了这些基本分岔的相图.其次,根据Taylor展式与隐函数定理,研究了分数阶微分系统的规范形,从而求出这些基本分岔的拓扑规范形.
简介:利用系统运动方程的线性化方程及其伴随方程的相互关系,以及散度表达式在全Euler算子作用下为零这一特性,通过引进守恒量乘子来求得运动系统的守恒量.该方法不需要运动系统的Lagrange函数.以Fokker-Planck方程为例,利用该方法可以很容易给出它的无穷多守恒量.
简介:广义Birkhoff方程是一类更为普遍的约束功学系统的方程.研究定常广义Birkhoff方程的平衡稳定性.建立平衡方程,给出系统的能量变化方程,根据Birkhoff函数的定号性质,建立平衡稳定性的判据.举例说明结果的应用.
简介:基于线性时变系统的稳定性理论,李雅普诺夫直接法和Gerschgorin圆盘定理求得判定广义Lienard方程振动系统达到全局同步的几种不同的代数判据.理论上比较这些不同代数判据表明:根据李雅诺夫直接法得到的代数判据优于根据Gerschgorin圆盘定理得到的代数判据,而且通过适当选取李雅普诺夫函数可以得到更优化的代数判据.Rayleigh—Duffing方程作为数值算例进一步验证了理论结果.
简介:介绍了一种实数快速傅里叶变换(FFT)的设计原理及实现方法,利用输入序列的对称性,将2N点的实数FFT计算转化为N点复数FFT计算,然后将FFT的N点复数输出序列进行适当的运算组合,获得原实数输入的2N点FFT复数输出序列,使FFT的运算量减少了近一半,很大程度上减少了系统的运算时间,解决了信号处理系统要求实时处理与傅里叶变换运算量大之间的矛盾.同时,给出了在TMS320VC5402DSP上实现实数FFT的软件设计,并比较了执行16,32,64,128,256,512,1024点实数FFT程序代码与相同点数复数FFT的程序代码运行时间.经过实验验证,各项指标均达到了设计要求.