简介:采用Born近似的Maxwell方程组积分解形式较少应用于气动光学数值计算,其困难在于对该方程组的离散化数值计算.而结合GCV-FFT(GeneralizedconvolutionbyfastFouriertransform)方法,在自由空间传播的Rayleigh-Sommerfeld衍射方程数值计算可以达到比较高的精度.通过对Green函数及采样系数的修正,积分方法可以用于气动光学现象的数值模拟.通过在超声速湍流边界层中光束传输的数值计算,可以看到一些气动光学效应,如光束偏移破碎等,可以用修正GCV-FFT+数值积分的方法得到良好的模拟.现有的方法可以给出更接近物理本质的定量结果.
简介:研究了一类奇摄动2m阶椭圆型方程解的多重边层现象.利用比较定理得到解的一致有效的渐近展开式.
简介:考虑第一个边界条件为参数的线性函数,第二个边界条件为有理函数的Sturm-Liouville问题.给出问题的特征值、特征函数的渐近式以及特征函数的振荡理论,并给出相应的应用实例.