简介:为了预测某导弹陀螺漂移趋势,以该陀螺漂移角速度时间序列为对象,建立了基于支持向量回归机的预测模型。针对该预测模型的特点,提出了支持向量预选取的模型优化方法。基于ε不敏感损失函数的支持向量回归机具有稀疏性,其结构由支持向量决定。因此从训练样本集中预选出有可能成为支持向量的样本,精简样本规模是提高该类支持向量回归机训练和预测效率的有效方法。针对该类支持向量回归机从分类和回归两个角度分析了支持向量的几何特征,提出了核函数空间免疫聚类的支持向量预选取方法并用于某导弹陀螺漂移预测模型的数据预处理。仿真结果表明优化后的预测模型运算量小、建模速度快,精度高。
简介:对于两个相依线性回归方程组成的系统(1.1),本文提出了β1的待定系数估计β^*1(k,c)=(x′1x1+k1)^-1(x′1y1-cσ12/σ22x′1N2y2),其中岭参数k≥0.c是待定系数.与β^*1(k,c)对应的非限定两步估计记为β^41(T,k,c).当c=1时β^*1(k,1)=β1(k)和β^*1(T,k,1)=β1(T,k)等干[6]引入的一双有偏估计,结果表明总可以选取适当的c值和k值使β^*1(k,c)和β^*1(T,k,c)在均方误差阵准则下分别优于β1和β1(T),并讨论了c值的最佳选择问题.
简介:为了填补船测海深数据空白,给出了海底地形起伏与重力异常和重力异常垂直梯度之间的导纳函数关系。据此,以测高重力异常、重力异常垂直梯度作为输入数据,采用线性回归分析技术,在西南太平洋相关海域开展了海底地形反演试验。结果表明,通过不同方法获取的比例因子与海底地形呈现一定的内在联系,地形平坦海域,比例因子较小;海山分布较多的地形起伏较大的海域,比例因子相对较大,反映了重力数据与海底地形较强的相关性。同时,采用线性回归方法构建的海底地形模型检核精度最高,相较于传统方法获取的海底地形模型,精度最高提升了46%左右,与ETOPO1海深模型和DTU10海深模型相比较,模型精度最大提高了近一倍有余。另外,不同方法对于不同的海底地形具有各自不同的优势,靠近海山区域,采用线性回归技术反演的海深结果优于传统方法;在海山部分,传统方法反演精度又好于线性回归技术。不同数据源反演海底地形的统计结果表明,以重力异常垂直梯度构建的海底地形模型的检核精度优于以重力异常作为输入数据构建的海底地形模型。
简介:应用SAS/STAT估计非线性回归模型中的参数.首先,通过变量代换,把可以线性化的非线性回归模型化为线性回归模型,并用普通最小二乘法、主成分分析法和偏最小二乘法求模型中的参数和回归模型.其次,通过改良的高斯一牛顿迭代法来估计Logistic模型和Compertz模型中的参数.
简介:介绍非线性方程转化直线性方程和多元线性回归法来分析近代物理实验中塞曼效应分裂干涉圆环多处选点测量的处理过程。
简介:本文根据上海股市2005年6月到2009年8月的上证指数数据,通过建立数学模型的方法,对上海股票市场的走势情况作出了综合评价,建立短期内预测股市发展趋势模型对上证指数进行预测,并通过历史实际数据对模型进行了验证。
简介:考虑一般的分块半相依线性回归(SUR)模型及其相应的简约模型,给出简约模型下未知回归系数及其可估函数的协方差改进估计仍是分块SUR模型下相应参数的协方差改进估计的一个充要条件.
简介:股票投资是一种重要且先进的投资方式,与其相关的预测已经成为经济领域的研究热点,它不仅是评估投资价值的主要途径而且也对作出正确的股票投资决策具有重要意义。投资风险、收益的预测是股票投资预测的基础、起点。因此,投资风险、收益的准确预测对股票投资分析工作是非常重要的。本文结合相关理论,利用数学和财管的专业知识对股票投资的风险和收益进行了预测,通过线性回归分析方法估计β,进而对资本资产定价模型进行定性分析。根据搜集的变量数据,比较准确的预测了股票投资风险和收益,是对股票投资定量分析的一种尝试。利用模型实证分析,可对投资决策进行科学理性的选择。
简介:目的:基于支持向量机回归(SVR)模型在非线时间序列的预测能力及经验模态分解(EMD)方法在处理非线性非平稳性的优势,提出一种复合自回归经验模态分解支持向量机回归(AR-EMDSVR)模型,提高非线性非平稳船舶运动极短期预报精度。创新点:1.研究非线性非平稳船舶运动的极短期预报问题,提出一种复合的预报方法;2.基于不同层次的预报模型和模型试验数据,分析非线性非平稳性对极短期预报精度的影响。方法:1.在SVR模型中引入基于自回归(AR)预报端点延拓的EMD方法,形成复合的AR-EMDSVR预报模型;2.基于集装箱船模水池试验运动数据将AR-EMD-SVR模型与AR、SVR和EMD-AR三种模型进行比较,分析非线性非平稳性对极短期预报的影响以及不同模型的预报性能。结论:1.AR-EMD方法能够有效的克服非平稳对极短期预报模型(AR和SVR)在精度上所带来的不良影响;2.基于船模试验数据的预报结果表明:相较于AR、SVR和EMD-AR三种预报模型,基于AR-EMD-SVR模型的非线性非平稳船舶运动极短期预报结果具有更高的精度。