学科分类
/ 5
84 个结果
  • 简介:为了预测某导弹陀螺漂移趋势,以该陀螺漂移角速度时间序列为对象,建立了基于支持向量回归机的预测模型。针对该预测模型的特点,提出了支持向量预选取的模型优化方法。基于ε不敏感损失函数的支持向量回归机具有稀疏性,其结构由支持向量决定。因此从训练样本集中预选出有可能成为支持向量的样本,精简样本规模是提高该类支持向量回归机训练和预测效率的有效方法。针对该类支持向量回归机从分类和回归两个角度分析了支持向量的几何特征,提出了核函数空间免疫聚类的支持向量预选取方法并用于某导弹陀螺漂移预测模型的数据预处理。仿真结果表明优化后的预测模型运算量小、建模速度快,精度高。

  • 标签: 支持向量回归机 免疫聚类 时间序列建模 陀螺漂移
  • 简介:对于两个相依线性回归方程组成的系统(1.1),本文提出了β1的待定系数估计β^*1(k,c)=(x′1x1+k1)^-1(x′1y1-cσ12/σ22x′1N2y2),其中岭参数k≥0.c是待定系数.与β^*1(k,c)对应的非限定两步估计记为β^41(T,k,c).当c=1时β^*1(k,1)=β1(k)和β^*1(T,k,1)=β1(T,k)等干[6]引入的一双有偏估计,结果表明总可以选取适当的c值和k值使β^*1(k,c)和β^*1(T,k,c)在均方误差阵准则下分别优于β1和β1(T),并讨论了c值的最佳选择问题.

  • 标签: 待定系数 两步估计 回归系数 有偏估计 均方误差 岭参数
  • 简介:风力发电是最具开发潜力的非水电再生能源,为保证电网的功率平衡和运行安全,需要对风电功率给出准确的预测。对于风电功率预测通常可采用以下3种方法:三次指数平滑法、ARMA方法以及灰色预测方法,但预测准确性不高,而采用风电功率预测的组合预测方法可以提高风电功率精度。将4种预测方法运用到实际风电功率算例中,由数值计算结果可以得出组合预测方法预测风电功率得到的结果精度较高。

  • 标签: 风电功率 组合预测 权系数 熵值法
  • 简介:为了填补船测海深数据空白,给出了海底地形起伏与重力异常和重力异常垂直梯度之间的导纳函数关系。据此,以测高重力异常、重力异常垂直梯度作为输入数据,采用线性回归分析技术,在西南太平洋相关海域开展了海底地形反演试验。结果表明,通过不同方法获取的比例因子与海底地形呈现一定的内在联系,地形平坦海域,比例因子较小;海山分布较多的地形起伏较大的海域,比例因子相对较大,反映了重力数据与海底地形较强的相关性。同时,采用线性回归方法构建的海底地形模型检核精度最高,相较于传统方法获取的海底地形模型,精度最高提升了46%左右,与ETOPO1海深模型和DTU10海深模型相比较,模型精度最大提高了近一倍有余。另外,不同方法对于不同的海底地形具有各自不同的优势,靠近海山区域,采用线性回归技术反演的海深结果优于传统方法;在海山部分,传统方法反演精度又好于线性回归技术。不同数据源反演海底地形的统计结果表明,以重力异常垂直梯度构建的海底地形模型的检核精度优于以重力异常作为输入数据构建的海底地形模型。

  • 标签: 重力异常 重力异常垂直梯度 海底地形 线性回归 地壳均衡
  • 简介:为了研究强跟踪性,本文给出了强链回归集的定义.证明了:若度量空间上的一个连续自映射有强跟踪性,则其强链回归集与极限集相同.

  • 标签: 强链回归集 强跟踪性 极限集
  • 简介:应用SAS/STAT估计非线性回归模型中的参数.首先,通过变量代换,把可以线性化的非线性回归模型化为线性回归模型,并用普通最小二乘法、主成分分析法和偏最小二乘法求模型中的参数和回归模型.其次,通过改良的高斯一牛顿迭代法来估计Logistic模型和Compertz模型中的参数.

  • 标签: 非线性回归模型 主成分分析 偏最小二乘回归法 改良高斯一牛顿迭代法 SAS/STAT
  • 简介:对于一类相依线性回归系统,本文提出了一种泛岭改进估计,并讨论了这种估计及相应的两步估计的优良性质,获得了若干深入的结果。

  • 标签: 两步估计 优良性 线性回归 性质 系统
  • 简介:人力资源规划是必不可少的管理环节。科学的人力资源规划,必须建立在对人员供、需的准确预测的基础上。本文讨论人力资源预测的问题和转移矩阵等方法的使用。

  • 标签: 人力资源管理 人力规划 预测方法
  • 简介:摘要准确的电力短期负荷预测是电网调度制定发供电计划和做好电网供需平衡的关键,作者根据多年来国内外负荷预测方面的研究成果,对电力负荷的传统预测方法和现代预测方法进行了高度概括,对现有方法的经验积累及改进提供了参考,同时对未来的预测技术进行了展望。

  • 标签: 电力短期负荷 负荷特性 预测方法
  • 简介:考虑一般的分块半相依线性回归(SUR)模型及其相应的简约模型,给出简约模型下未知回归系数及其可估函数的协方差改进估计仍是分块SUR模型下相应参数的协方差改进估计的一个充要条件.

  • 标签: 分块半相依线性回归漠型 简约模型 协方差改进估计
  • 简介:在非线性回归模型中,拟得分函数是一类线性无偏估计函数中的最优者(GodambeandHeyde(1987),朱仲义(1996)),而由拟得分函数得到的拟似然估计在由线性无偏估计函数得到的估计类中具有渐近最优性(林路(1999)).本文则研究非线性回归模型中的有偏估计函数理论,构造了参数的约束拟似然估计,得到了约束拟似然的局部最优性,局部改进了拟似然估计,从而扩充了线性模型中的有偏估计理论.

  • 标签: 非线性回归 拟似然 约束拟似然
  • 简介:股票投资是一种重要且先进的投资方式,与其相关的预测已经成为经济领域的研究热点,它不仅是评估投资价值的主要途径而且也对作出正确的股票投资决策具有重要意义。投资风险、收益的预测是股票投资预测的基础、起点。因此,投资风险、收益的准确预测对股票投资分析工作是非常重要的。本文结合相关理论,利用数学和财管的专业知识对股票投资的风险和收益进行了预测,通过线性回归分析方法估计β,进而对资本资产定价模型进行定性分析。根据搜集的变量数据,比较准确的预测了股票投资风险和收益,是对股票投资定量分析的一种尝试。利用模型实证分析,可对投资决策进行科学理性的选择。

  • 标签: 线性回归分析模型 股票投资 资本资产定价模型
  • 简介:目的:基于支持向量机回归(SVR)模型在非线时间序列的预测能力及经验模态分解(EMD)方法在处理非线性非平稳性的优势,提出一种复合自回归经验模态分解支持向量机回归(AR-EMDSVR)模型,提高非线性非平稳船舶运动极短期预报精度。创新点:1.研究非线性非平稳船舶运动的极短期预报问题,提出一种复合的预报方法;2.基于不同层次的预报模型和模型试验数据,分析非线性非平稳性对极短期预报精度的影响。方法:1.在SVR模型中引入基于自回归(AR)预报端点延拓的EMD方法,形成复合的AR-EMDSVR预报模型;2.基于集装箱船模水池试验运动数据将AR-EMD-SVR模型与AR、SVR和EMD-AR三种模型进行比较,分析非线性非平稳性对极短期预报的影响以及不同模型的预报性能。结论:1.AR-EMD方法能够有效的克服非平稳对极短期预报模型(AR和SVR)在精度上所带来的不良影响;2.基于船模试验数据的预报结果表明:相较于AR、SVR和EMD-AR三种预报模型,基于AR-EMD-SVR模型的非线性非平稳船舶运动极短期预报结果具有更高的精度。

  • 标签: 非线性非平稳船舶运动 极短期预报 经验模态分解 支持向量机回归模型 自回归模型
  • 简介:香港,回到祖国母亲的怀抱——庆祝香港回归情思戈缨七月一日的香港处处张灯结彩,你在亿万欢声笑语中扑进久别祖国母亲的情怀;你在雄壮的国歌声中昂首阔步,以新的雄姿扬名世界!呵,一九九七年七月一日,是你难忘的光辉一页,三万六千个日日夜夜母亲的呼唤,声声期盼你...

  • 标签: 香港回归 母亲 “一国两制” 青藏高原 祖国 计算机
  • 简介:利用正交变换法,给出一元线性回归假设检验定理的一种直接证明.这种证明方法可供在数理统计教学中作参考.

  • 标签: 正交变换 回归 假设检验
  • 简介:针对深圳市遭受洪灾的风险评估和损失预测问题,就参加2014年'深圳杯'数学建模夏令营的部分论文进行简单评述。

  • 标签: 洪灾 风险评估 损失预测