学科分类
/ 1
19 个结果
  • 简介:沪深300股指期货与现货波动溢出问题的研究对于风险管理具有重要的理论和现实意义。本文旨在基于高频数据,利用异质金融市场驱动的HAR—CAW模型研究我国股指期货和现货市场之间及其自身的短期、中期和长期波动溢出问题。研究结果表明,沪深300股指期货与现货市场之间整体上存在着双向波动溢出效应,但是溢出效应不对称,期货对现货的溢出效应占主导地位;在相互间各期溢出研究上,两市场问的各期溢出表现各不相同;在自身溢出效应上,各期整体而言现货市场存在溢出,而期货市场不存在。

  • 标签: 波动溢出 股指 期货 高频数据 HAR—CAW模型
  • 简介:为实现多枚导弹协同攻击机动目标,基于具有推力可控能力的导弹,提出了一种带落角约束的多导弹分布式协同制导律。将制导律的设计分离为视线方向和视线法向上两个部分:视线方向上基于多智能体协同控制理论和超螺旋控制算法,设计制导律控制导弹剩余时间在有限时间内趋于一致;视线法向上运用零化视线角速率思想和有限时间滑模控制理论,设计制导律控制导弹击中目标的同时满足落角约束。并针对两部分制导律中存在的目标机动信息,分别设计非齐次干扰观测器进行估计。仿真结果表明,提出的制导律能够有效完成协同攻击任务,脱靶量和落角误差分别控制在0.13m和0.02°以内,并且有效抑制了抖振现象,有利于提高导弹自动驾驶仪的跟踪精度。

  • 标签: 协同制导 落角约束 机动目标 分布式通信拓扑 滑模控制 抖振
  • 简介:文章通过有界可逆算子,引入了Hilbert空间中控制连续框架概念,并给出控制连续框架的一些基本性质.控制连续框架是控制框架和连续框架的推广,它具有很多类似于连续框架的性质.另外,文章应用算子论的方法,讨论了控制连续框架的扰动性,且表明连续框架或Bessel集在一定条件下为控制连续框架,控制连续框架在一定条件下为连续框架.

  • 标签: 算子 连续框架 控制连续框架 扰动性
  • 简介:有理逼近问题是函数逼近论的一个重要分支,为了在较大范围内研究有理逼近问题,本文在连续函数空间和L_p空间内研究有理逼近方法的基础上,利用修正的Bak算子,Hardy-Littlewood极大函数等工具,借助不等式技巧,研究了Muntz有理函数在Orlicz空间内的逼近问题,给出了光滑函数的Muntz有理逼近阶的两种估计,所得的结果明显优于前人的同类结果.

  • 标签: Bak算子 ORLICZ空间 Muntz有理逼近
  • 简介:在一致空间X的全体Cauchy网构成的集合X中,引入等价类,得到了商空间X.进一步,在X中构造了一致结构基,证明了X在该一致结构下是完备的,且一致空间X一致同胚于X的稠密一致子空间.此外,在一致同胚意义下一致空间X的完备化空间是唯一的.这个定理可以看作完备化定理的统一形式.

  • 标签: 商空间 一致结构基 完备化空间 一致同胚
  • 简介:本文利用K-泛函、加权连续模与极大函数等工具,借助不等式技巧,在Orlicz空间内研究了复系数多项式的倒数逼近问题,得到了收敛速度估计的结果.

  • 标签: ORLICZ空间 加权连续模 逼近 多项式
  • 简介:在分离一致空间上给出了算子半群{Vt}的吸引子的相关定义,讨论了算子半群的σ-极限集与轨道之间的关系,极小闭全局吸引子和极小闭全局B-吸引子的关系及其存在的充分条件.给出了在分离一致空间上集合的σ-极限集是吸引自身的非空不变极小紧集的充分条件.

  • 标签: 一致空间 算子半群 吸引子
  • 简介:本文研究Hardy-Lorentz-Karamata空间中鞅的凹函数不等式,具体而言,设Φ是一凹函数,证明了若干关于鞅的极大函数M(f)、均方函数S(f)和条件均方函数s(f)之间的"Φ-Lp,q,b"型不等式.为了获得这些结果,建立了一些新的原子分解定理.

  • 标签: Hardy-Lorentz-Karamata空间 凹函数 鞅不等式 原子分解
  • 简介:对主振荡功率放大(MOPA)结构的光纤激光器,采用空间多点泵浦方法,改变介质中增益的空间分布,能够在保证放大器效率的同时有效抑制光纤中的后向SBS散射光。对百瓦级光纤放大器中信号光、散射光及增益分布进行了数值模拟,分析了散射光放大原因,并将两点泵浦应用于该放大器系统,相同输出功率时,散射光由3.2W降为6.8mW。计算结果表明,多点泵浦技术的引入,能有效抑制光纤放大器中的SBS效应。

  • 标签: 光纤放大器 受激布里渊散射 抑制 多点泵浦
  • 简介:空间观念是义务教育阶段课程的主要目标之一.空间与人类的生存密切相关,了解、探索和把握生活空间,能使人类更好地生存、活动和利用空间.空间观念也是创新精神所需的基本要素,没有空间观念和空间想象力,很难有发明与创造,因为许多的发明创造都是以实物形态呈现的,是人的思维不断在二维和三维空间之间的转换、利用直观进行思考的过程.长方体和正方体是小学生系统学习立体几何的知识的开端,蕴含着丰富的从一维到三维多种要素,学生的思维不断在一维到二维,再从二维到三维间相互转换,丰盈教学过程,有利于发展学生的空间观念.

  • 标签: 空间观念 正方体 长方体 教学实践 单元 培养
  • 简介:在分离拓扑线性空间上讨论了K类算子半群与AK类算子半群{V_t}在具有有限的全局吸收集条件下极小闭全局吸引子M的存在性和在具有有界全局吸收集条件下极小闭全局B-吸引子M的存在性,并讨论了这两类全局吸引子与σ-极限集的关系和M的连通性.此外,还讨论了具有紧的全局B-吸收集条件下极小闭全局B-吸引子M的存在性以及它与σ-极限集的关系.

  • 标签: 拓扑线性空间 算子半群 吸引子
  • 简介:本文利用Hardy-Littlewood极大函数、光滑模和K-泛函之间的等价关系、N函数的凸性、算子矩量估计及Jensen不等式等工具,研究了由陈文忠定义的LupasBaskakov型算子在Orlicz空间内的逼近性质,给出并证明了该算子在Orlicz空间内逼近的强型逆定理.由于Orlicz空间比连续函数空间和L_p空间涵盖更广泛,其拓扑结构也比L_p空间复杂得多,所以本文的结果具有一定的拓展意义.

  • 标签: Lupas-Baskakov算子 ORLICZ空间 逼近 强逆不等式
  • 简介:通过对可预报向量值弱Hardy-Orlicz鞅空间wPB^Φ建立弱原子鞅分解,并借助广义的Davis鞅分解定理,证明了有限鞅在向量值弱Hardy-Orlicz鞅空间wHB^Φ中稠密的充分必要条件是Banach空间B具有Radon-Nikodym性质,所得结果推广了已有文献中的相应结论.

  • 标签: 有限鞅 稠密性 弱Hardy-Orlicz空间 RADON-NIKODYM性质
  • 简介:在本文中,作者研究了一种特殊的Banach空间,即Orlicz函数空间LM的子集A要构成LN-弱序列紧集合的充分必要条件是什么,给出了第一判别充要定理.

  • 标签: LN-弱序列紧性 Orlicz空间LM 弱序列紧性
  • 简介:S^p(1≤p≤∞)空间为导数属于Hardy空间H^p的复平面单位圆盘D上所有解析函数组成的空间.令函数φ和φ是D上的解析函数且φ(D)D,则将算子W(φ,φ):f→φfoφ称为加权复合算子.文章给出了当1≤q≤p≤∞,φ∈S^∞时,加权复合算子W(φ,φ)从空间S^p到S^q上的有界性的充要条件.然后通过推广经典的Fejer-Riesz不等式证明了当1〈p≤∞时,S^p到圆盘代数A上的嵌入映射是紧的.

  • 标签: S^p空间 HARDY空间 加权复合算子 Fejer-Riesz不等式 嵌入映射
  • 简介:本文引进了局部凸空间一致极凸性的概念,给出其对偶的定义,也就是局部凸空间一致极光滑性,并且在P-自反的条件下得到它们之间的对偶定理,则(X,T_P)是局部凸的一致极凸(局部凸的一致极光滑)的当且仅当(X’,T_P’)是局部凸的一致极凸(局部凸的一致极光滑)的.

  • 标签: 局部凸空间 一致极凸性 一致极光滑性 对偶关系 P-自反
  • 简介:在分离拓扑线性空间上得出了具有有限全局吸收集的B-AH类算子半群全局吸引子的存在性以及它们与σ-极限集的关系.此外,还讨论了一类极小闭全局B-吸引子的连通性.

  • 标签: 拓扑线性空间 算子半群 吸引子 连通性
  • 简介:首先通过讨论具有可选服务和无等待空间的M/G/1排队模型的主算子生成的C0-半群的本质增长界指出0是该主算子的一级极点,然后运用残数定理证明该模型的时间依赖解指数收敛于其稳态解.

  • 标签: 时间依赖解 C0-半群 投影算子 本质增长界