简介:抛物线是三大圆锥曲线之一,由于我们熟知的二次函数图象是抛物线,可以说抛物线是考生学习时间最长,最为了解的圆锥曲线了,很容易结合其它知识综合考查,考题具有很强的灵活性与新颖性.在近几年高考中考查的重点为抛物线的方程,准线及几何性质或与抛物线相关的综合问题(轨迹问题、直线与抛物线综合问题).选择题、填空题主要考查标准方程、几何性质;解答题则突出对解析几何的思想方法的考查.注意与向量知识、导数知识的交汇考查是高考中的热点.预计在今后高考中客观题主要考查其标准方程和性质,解答题主要有两类:一是轨迹问题,二是直线与抛物线问题.
简介:平面直角坐标系中,把一条抛物线进行平移,抛物线上各点的位置发生变化,各点坐标也发生变化.抛物线向左或右平移,抛物线上各点的横坐标都相应减少或增大,而纵坐标不变;抛物线向下或上平移,抛物线上各点的横坐标不变,而纵坐标都相应减少或增大.反之,把抛物线上各点的横坐标都相应减少或增大,纵坐标不变,抛物线就向左或右平移;把抛物线上各点的纵坐标都相应减少或增大,横坐标不变,抛物线向下或上平移.由于平移不改变图形的形状、大小和方向,因而抛物线上各点平移的规律必然一致,即抛物线的平移规律与抛物线顶点的平移规律完全相同.所以,把抛物线进行平移变换,抛物线解析式中的二次项系数不变,只有抛物线的顶点位置改变,也就是顶点坐标发生了改变.