简介:研究了一类用于时间序列建模的混合自回归滑动平均模型,该模型是由m个ARMA分量经过混合得到的,给出了混合自回归滑动平均模型参数估计的期望极大化(EM)算法,从而得到了混合系数和分量模型的参数,通过仿真说明了其有效性。
简介:摘要目的探讨利用自回归滑动平均模型法(ARIMA)对宁波市奉化区人口出生率数据进行预测的可行性。方法利用R3.5.0软件对浙江省宁波市奉化区1983—2013年出生率数据拟合ARIMA模型,对模型参数与残差进行统计学分析,并利用拟合的模型对奉化区2014—2018年的出生率进行预测。结果拟合的模型为ARIMA(0,1,0),模型的残差分析表明残差符合白噪声过程。2014—2018年出生率预测相对误差率最大的年份是2017年为23.40%,相对误差率最小的是2015年为3.25%。结论ARIMA(0,1,0)模型能较好地拟合奉化区出生率的时间变化趋势,可用于未来奉化区出生率的短期预测。
简介:目的了解杭州市上城区主要肠道传染病的流行特征,探讨应用为自回归积分滑动平均模型(ARIMA模型)预测其发病趋势的可行性和适用性。方法应用SPSS20.0对2007-2016年杭州市上城区主要肠道传染病月发病数据建立ARIMA模型,以2017年1~12月的数据进行模型的验证,并外推2018年的发病趋势。结果2007-2016年细菌性痢疾和其他感染性腹泻的发病趋势总体呈下降趋势。细菌性痢疾的预测模型为ARIMA(1,1,1)(1,1,0)12,其他感染性腹泻的预测模型为ARIMA(2,0,2)(1,1,1)12,拟合效果均较好。2018年杭州市上城区细菌性痢疾的发病有下降的趋势,其他感染性腹泻的发病有上升的趋势,但幅度不大。结论ARIMA模型对杭州市上城区主要肠道传染病的发病趋势有较好的预测效果,可提供科学的防控依据。
简介:摘要目的比较差分整合移动平均自回归模型(ARIMA)和深度学习模型在吸脂操作数据预测分析方面的应用价值。方法选取2019年1至9月中国医学科学院整形外科医院符合入选标准的行吸脂手术患者,使用基于光学追踪系统和力传感技术的吸脂操作记录系统,采集高年资整形外科医生吸脂手术初始250~400 s的操作数据,包括运动学和力学数据。经预处理后将采集数据分成一个吸脂往复循环为一组的数据。分别使用ARIMA模型和深度学习模型处理分析采集到的数据,建立吸脂操作预测模型。用Matlab 2017软件产生随机数随机抽取30对共计60组吸脂循环数据,计算每对数据的动态时间规整(DTW)值作为检验标准,然后分别计算基于ARIMA模型与深度学习模型的各30组预测数据与实际数据之间的DTW值,与检验标准对比,对2种模型的预测结果进行验证。应用Matlab 2017软件进行统计分析,2组比较用独立样本t检验,P<0.05为差异有统计学意义。结果共入组18例患者,均为女性,年龄23~49岁,平均36.6岁。吸脂部位分别为腹部、大腿、腰部。共获得16 800组吸脂循环数据。模型检验标准DTW值为0.048±0.028。ARIMA模型预测数据与实际数据之间的DTW值为0.660±0.577,与检验标准比较差异有统计学意义(P<0.05)。深度学习模型得出的DTW值为0.052±0.030,与检验标准比较差异无统计学意义(P>0.05)。结论相比ARIMA模型,深度学习模型可以更准确地预测吸脂操作数据,能更好地适应不同情况的数据,并且具有更好的实时性。
简介:摘要院利用两步估计方法对混合地理加权回归模型进行拟合,运用Moran's检验方法探索误差项的空间相关性。
简介:租金作为一种价格机制在整个租赁市场中起着十分重要的信号作用,较低租售收入比抑制着房源供给,超越支付能力的租金又是群租房等滋生的原因。由于“住有所居”的特殊性,租金补贴方案成为促进市场发展、保护租房群体的“民生”政策。本文以特征价格模型为基础,建立空间自回归模型,探究南京市小区单位租金的价格机制。本文采集南京市2156个小区的住宅租金样本数据,运用莫兰指数检验小区单位租金的空间自相关性,根据特征价格模型,将影响小区单位租金的13个特征分为整体特征、邻里特征和区位特征三类,建立空间自回归模型。研究发现,小区单位租金存在空间正自相关,小区物业费、绿化率,周围高中、医院、超市、大学校区、公交、地铁站以及和商务中心的距离对小区单位租金存在显著影响。这些因素会影响租赁住宅的供需关系和居住效用水平,从而决定小区的单位租金水平。