学科分类
/ 25
500 个结果
  • 简介:由于平面向量融数、形于一体,具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点和联系多项内容的媒介.因此利用平面向量这个工具可以简捷、规范地处理数学中的许多问题.特别是向量的引入大大拓宽了解题的思路与方法,在研究其他许多问题时获得广泛的应用.

  • 标签: 零向量 解题 平面向量 数学知识 代数形式 几何形式
  • 简介:  设a≠0,b≠0,a、b的夹角为θ(0≤θ≤π),则根据数量积的定义a·b=|a|·|b|·cosθ不难得到:①若θ为锐角,则a·b>0;②若θ为直角,则a·b=0;③若θ为钝角,则a·b<0,这三条结论大家足熟悉的.对这三条结沦作逆向思考,即它们的逆命题是否成立呢?先看以下两个问题:……

  • 标签: 向量夹角 夹角锐角 钝角充要条件
  • 简介:在立体几何里,一提到向量法,几乎所有的师生想到的可能都是向量坐标法.事实上,向量法大致可分为两类:坐标法和非坐标法(或者称基底法).向量基底法更加"厉害",坐标法可解决的问题都可用基底法解答,对于空间几何体本身不具备垂直关系,或建立直角坐标系较为麻烦的,或不易求解点的坐标的题目,用基底法则更简明快捷.

  • 标签: 向量法 向量坐标法 解题方法 基底法
  • 简介:联系上文,我们会发现向量不等式在解决相关的代数问题时,很有用处,本文,我们就来重点谈一谈如何构造向量.巧用向量不等式来解题.

  • 标签: 不等式 向量 构造 妙用 代数问题 巧用
  • 简介:摘要: 平面向量基本定理是向量学习的一个非常重要的内容,计算中掌握交叉法则可以使计算变得简洁。

  • 标签: 向量 交叉法则 坐标
  • 简介:

  • 标签:
  • 简介:实质追索向量是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.

  • 标签: 平面向量 几何问题 数学概念 概念引入 勾股定理 代数学
  • 简介:<正>向量既有大小,又有方向,是数与形的完美结合.向量是数学中的重要概念,并能和数一样进行运算,而且用向量的有关知识能有效地解决数学、物理等学科中的很多问题,向量内容的增加,可解决多年来高中数学教材对向量介绍过简而产生的对物理教学不适应的状况.特别是明显滞后于学习运动学教学的情况会有所改变.这样,使各科教学之间可以互相渗透,有利于综合能办的培养.

  • 标签: 平面向量 数学教材 定比分点 中学数学 离心率 角平分线
  • 简介:<正>考点解读综观近几年的高考试题,平面向量的试题主要有两类:一是考查平面向量的概念和运算,突出考查共线、垂直、向量的模、数量积等;二是突出平面向量的工具作用,主要与函数、三角函数、解析几何、数列、解斜三角形的综合题.对于考查平面向量的有关概念和运算的试题,

  • 标签: 平面向量 斜三角形 数量积 高考试题 向量的模 定比分点
  • 简介:在教材中,法向量只有定义“如果向量α与平面α垂直,那么向量α叫平面α的法向量”.本文说明用法向量解决不少立体几何问题.

  • 标签: 法量 牵手法