简介:整数阶常微分方程的古典解法特征根方法对于分数阶常微分方程能不能适用?通过分数阶导数的积分下限取-∞,证明了指数函数f(t)=eπ的Riemann-Liouville型α阶导数为raert从而对Riemann-Liouville型分数阶非齐次常微分方程可以通过特征根方法求得它的通解。分数阶常微分方程在通解中所含的相互独立的任意常数个数与一般传统的整数阶微分方程的规律不同,但却能相容的。
简介:讨论Curto-Fialkow所给出的四阶截断复矩问题,即给一个复数序列γ≡γ~((4)):γ_(00),γ_(0)1,γ_(10),γ_(02),γ_(11),γ_(20),γ_(03),γ_(12),γ_(21),γ_(30),γ_(04),γ_(13),γ_(22),γ_(31),γ_(40),其中γ_(00)〉0,γ_(ij)=y_(ji),找到一个正的Borel测度使得γ_(ij)=∫-izz~jdμ(0≤i+j≤4)成立;得到了四阶非奇异截断复矩矩阵M(2)的平坦延拓存在的充分必要条件及在特殊情况下的解,并举例进行了验证.
简介:利用临界点理论中的山路引理,研究一类分数阶Kirchhoff型方程在次临界增长条件下非平凡解的存在性,进一步统一和丰富了已有文献的相关结果.