简介:摘要:本文利用数据分析方法,构建了 TBM 电气设备故障预测模型,并设计了实时监测和预警系统,以及维护策略。收集并分析了 TBM 电气设备的历史故障数据和相关参数,提取了影响故障发生的特征,形成数据样例,然后使用四种机器学习算法,构建了故障预测模型,并对模型进行了评估和优化。结果表明,神经网络和 SVM 模型具有最高的预测准确性。通过在 TBM 电气设备上安装传感器,实时监测设备的工作状态,并根据模型的预测结果,及时发出预警信号,以便采取相应的维护措施。此外,还提出了温度监测与控制、绝缘检查等维护措施,以保障设备的稳定性和可靠性,防止故障的发生和扩散。