学科分类
/ 25
500 个结果
  • 简介:把Banach空间上向量测度理论中的VitaliHahnSaksNikodym定理推广到了更一般的局部凸空间上.进而给出局部凸空间上强可加向量测度列与一致强可加测度列的关系.

  • 标签: 局部凸空间 Vitali-Hahn-Saks-Nikodym定理
  • 简介:Hahn-Banach定理,作为泛函分析三大基本定理之一应用广泛.本文介绍该定理的内容,并初步探讨其推论及其在泛函的延拓的应用.

  • 标签: HAHN-BANACH定理 泛函分析 延拓 应用
  • 简介:让X是有一个Schauder基础的一个Banach空格{en},并且让的(I)=n=1en我fn(t)dt一有限地单位上的添加剂间隔措施间隔[0,1],在积分在Henstock-Kurzweil的意义被拿的地方。必要、足够的条件被给为是Henstock-Kurzweil-Pettis的不定的积分(或Henstock,或变化Henstock)integrable功能f:[0,1]X。

  • 标签: Banach空间 单位区间 添加剂 基础值 m导数 SCHAUDER基
  • 简介:教学设计教学目标(一)知识与技能1.理解互逆命题、原命题、逆命题的有关概念及关系;2.掌握勾股定理的逆定理的探究方法;3.掌握勾股定理的逆定理并会运用。

  • 标签: 勾股定理 逆定理 直角三角形
  • 简介:北师大版初中义务教育数学教科书(第九册)用构造法证明了勾股定理的逆定理,方法经典、不失巧妙(文[1]作了详细叙述),但所构造的新图形显得有些突如其来,给学生的感觉是“太难想到了”;文[1]用反证法来证明,也非常简洁,但反证法需要较强的逻辑思维能力,这对初中阶段的学生来说是较难适应的,更何况应用反证法的前提是“正难则反”.

  • 标签: 勾股定理 逆定理 逻辑思维能力 “正难则反” 初中阶段 数学教科书
  • 简介:本文梳理了椭圆的几个经典的等价定义,并研究了椭圆法线定理的逆命题,给出了肯定回答,这个问题与几何光学密切相关.

  • 标签: 椭圆 法线定理的逆定理
  • 简介:勾股定理是初中几何的一个重要定理,它主要是用于求直角三角形的边长;而其逆定理则是用于判定一个三角形中的某一个角是直角.由此看来,勾股定理与其逆定理在应用上有着很大的不同,然而却有不少的几何问题必须应用两者“联手”来解决,现略举几例说明.

  • 标签: 勾股定理 逆定理 直角三角形 解题 初中几何 几何问题
  • 简介:Darboux定理是数学分析中的一个重要定理.在已有文献的基础上,对该定理作了进一步的研究,利用区间套定理给出了它的新的证明方法.证明思路与现有的其它证明思路是不同的.

  • 标签: 区间套定理 DARBOUX定理 局部保号性
  • 简介:甲:听说你对勾股定理很有研究,是吗?乙:研究谈不上,多少知道一点罢了.甲:都知道些什么呢?.乙:知道勾股定理的证明有几百种,而且大多数是采用面积证法.听说连美国的一位总统也曾凑过热闹,找到了一种很简便的证法.

  • 标签: 勾股定理 逆定理 陷阱 证法
  • 简介:勾股定理及其逆定理是几何中的重要定理,应用极其广泛,历年来都是各地中考命题的热点.了解一下往年中考怎么考,同学们学习时就会胸有成竹了.

  • 标签: 勾股定理 逆定理 应用 中考命题 几何 学习
  • 简介:本文讨论积分中值定理是否具有逆定理,即函数f(x)在[a,b]上连续,对(a,b)内的任意值c,是否存在一个区间[α,β][a,b],使∫αβf(x)dx=f(c)(β-α)。文中对值c分三种情况给出相应的结论.

  • 标签: 连续 积分 中值定理 极值点 最值点
  • 简介:在G-凸空间中证明了一些新的KKM型定理.作为应用,在G-凸空间中得到了一些新的匹配定理和截口定理,所得结果改进和推广了[2,3,7]中的相关结果.

  • 标签: G-凸空间 KKM型定理 匹配定理 截口定理
  • 简介:

  • 标签:
  • 简介:美不仅存在于风景名胜、艺术作品、仪表服饰之中,在数学中也有美学的思考,漂亮、简洁、别致等都与真理一样重要.数学王国里许多精美的定理、公式、图形,与艺术品一样,给人以美感。

  • 标签: 定理 风景名胜 艺术作品 艺术品 数学 公式
  • 简介:周朝初年,我国就发现了勾股定理的一个特例,勾三、股四、弦五。我国现存最早的古代数学著作《周髀算经》中就已经介绍了勾股定理,书中记述了商高回答周公问题的一句十分重要的话:

  • 标签: 勾股定理 《周髀算经》 古代数学 特例