简介:本文首先给出integralfromato+∞f(x)dx收敛≠lim+∞f(x)=0的一更强的例子,然后给出一个与级数收敛的必要条件类似的,integralfromato+∞f(x)dx收敛的必要条件。在许多工科高等数学教材中,广义积分敛散性的判别,一般都在级数中讨论,因而一部分同学和个别教师往往把级数的一些重要性质,直接推广到广义积分integralfromato+∞f(x)dx上。最典型的错误是把级数收敛的必要条件推广到广义积分上,即integralfromato+∞f(x)dx收敛?lim?+∞f(x)=0.这类错误较为普遍。
简介:运用二重B-值随机变量列{Xmn}在某阶矩一致有界条件下的性质和引理2.1的不等式,结合二重Dirichlet级数的成果,证明了在一定条件下,二重B-值随机Dirichlet级数+∞∑m=1+∞∑n=1Xmne-λms-μnta.s.几乎必然与二重Dirichlet级数+∞∑m=1+∞∑n=1E(||Xmn||)e-λms-μnt有相同的成对的相关收敛横坐标.
简介:利用Clark定理,研究了一维p-Laplacian方程边值问题多解的存在性,得到了这类边值问题至少有n对非平凡解的充分条件.
简介:在锥序Banach空间中引入了集值映射ε-严有效意义下的广义梯度.在连通性条件下,利用凸集分离定理证明了该广义梯度的存在性.作为应用,给出了用广义梯度刻画集值优化问题ε-严有效解的充分和必要条件.