简介:Sargent改进的Powell方法是曲线拟合中的一种重要方法。本文利用这种方法针对蕴藻浜特大桥沉降中的实测数据给出了五种模型下的沉降预测,这些模型包括双曲线斜率倒数模型、VanderVeen指数模型、宇都一马指数模型、龚帕兹模型、以及波松曲线模型,并发现这种方法对波松旋回模型和灰色系统模型适用性不强。
简介:本文研究具Balakrishnan-Taylor阻尼的Kirchhoff方程初边值问题.利用Nakao不等式,得到了解的衰减性.
简介:给出广义Fibonacci等距子列的定义,求出以Fibonacci数f∞为模的模数列的周期,由此得到求广义Fibonacci数列模f∞的周期的算法.
简介:以鞅变换为工具,刻画了Orlicz-Hardy鞅空间之间的相互关系.即采用构造性方法,证明了如下结论:(1)设Φ_1是凹函数,其下指标q_(Φ_1)〉0,Φ_2是凸函数,其上指标p_(Φ_2)〈∞.则鞅f∈H_(Φ_1)~s,当且仅当f是H_(Φ_2)~s中某个鞅g的鞅变换;(2)设Φ是凹函数,其下指标q_Φ〉0.则鞅f∈H_Φ~s,当且仅当f是BMO_2中某个鞅g的鞅变换.
简介:在Zeng等人对有界变差函数f的Durrmeyer-Bézier算子在区间(0,1)上收敛于(1/(α+1))f(x+)+(α/(α+1))f(x-)的收敛阶进行研究的基础上,利用基函数的概率性质等方法,对其所给的Durrmeyer-Bézier算子收敛阶估计结果作进一步的改进,得到其收敛阶的精确估计.
简介:Inthispaper,weconsidertheevolutionofasolitonwhendissipativeloseexists.Bymeansofnon-perturbedmethod,anexactenvelopewavesolutionofnonlimearSchroedingerequationwithdissipativetermisobtained.ItisshownthatwhenГ=γ0/(1+2γot),thesolutiongivenherestillmaintainsthehyperbolicsecantprofile.