简介:主要讨论由Lipschitz函数b与广义C-Z算子T生成的交换子[b,T]在加权Herz型Hardy空间上的有界性,证明了[6,T]从HKq1^α,p(w1,w2^q1)到HKq2^α,p(w1,w2^q2)的有界性.
简介:运用集中紧性和Nehari约束方法,证明了对任意L〉0和c〉0,修正的Benjamin方程ηt+(f(η))x+LHηxx+ηxxx=0,x,t/∈R有一个孤立波η(x,t)=u(x-ct).
简介:设函数φ和Ф是复平面单位圆盘D上的解析函数且φ(D)■D,则将加权复合算子定义为Wφ,Ф:f→Фf°φ.当1
简介:研究一类非线性双曲方程utt-M∫Ω|u|2dx△u=|u|αu的初边值问题局部解的存在性和唯一性.利用Galerkin方法和改进的势井理论得到:当M(r)和α满足一定条件,且初值充分小时,方程存在局部解.
简介:利用迭合度理论的连续定理,讨论了一类中立型系统的正周期解的存在性.得到了正周期解存在的一些充分条件.
简介:讨论了一类具有奇异系数的p-Laplace问题-Δpu-μ|u|u|x|p=u|x|tu+λuq-2u,x∈Ω,u=0,x∈Ω无穷多解的存在性,其中N≥3,Ω是RN中一有界光滑区域,0∈Ω,Δpu=-div(|▽u|p-2▽u),0≤μ〈μ=(N-p)ppp,1〈p〈N,0≤t〈p,λ〉0,1〈q〈p,p*(t)=p(N-t)(N-p)是Hardy-Sobolev临界指数利用变分原理和对偶喷泉定理,证明了该问题具有无穷多解.