简介:本文综述随机动力系统的基本概念、理论、方法与应用,内容包括Brownian运动、Lévy运动和随机微分方程及其解的刻画。重点讨论通过量化指标、不变结构、几何方法和非高斯性态来理解随机动力学现象。本文还介绍了段金桥的著作《AnIntroductiontoStochasticDynamics(随机动力系统导论)》的基本内容。
简介:本文研究kolmogorov捕食系统{(dx/dt)=x(ψ(x)-φ(y)(dx/dt)=y(bx^m-d)得到了极限环存在唯一的条件,从而推广了前人相关的结果.其中:ψ(x)=a0+a1x+a2x^2+…+a(a-1)x^(n-1)-anx^n;n≥m≥1(n,m∈N),φ(0)=0,φ(y)〉ε〉0(y〉0).
简介:讲座了超导中连续Josephson结系统解的渐近行为,利用先验估计证明了当时间趋于无穷时解收敛于对应稳态问题的解。