简介:利用上下解方法和Schuder不动点定理研究了三阶微分方程周期边值问题解的存在性.
简介:带柔性时间窗的开放式车辆路径问题(OpeningVehicleRoutingProblemwithFlexibleTimewin—dows,OVRPFTW)对物流配送中的延迟或者提早具有一定程度的容忍.本文首先建立了OVRPFTW的数学模型,然后分别将Sine映射,Chebyshev映射和Logistic映射引入基本蚁群算法,构建了三种混沌蚁群算法,并将其用于求解OVRPFTW.算倒测试表明:Sine映射和Chebyshev映射能够明显地改进基本蚁群算法的优化性能,基于Sine映射和Chebyshev映射的混沌蚁群算法的求解性能优于基本蚁群算法和基于Logistic映射的混沌蚁群算法.
简介:希尔伯特在巴黎国际数学家代表大会上发表演讲《数学问题》,并指出数学问题乃是数学前进的指路明灯.之后,问题解决成了国际教育改革的一个热点问题.问题解决的目的是提高学生解决实际问题的能力,而这种能力的培养是通过一系列创造性的思维活动过程来完成,其中就包括了直观思维.直观思维区别于逻辑思维,是数学教学过程中一种重要的思维方法,它是不经过逐步分析,而迅速对问题的答案作出合理猜测、设想和顿悟的一种跃进性思维,它是外界事物在人脑中的反应.数学问题的解决过程中,直观思维是一种主动的、自觉的或自动化的理解运用数学知识的态度和意识,它可以帮助学生用灵活的方法作出数学判断,针对数学问题的解决提出有效的策略.
简介:本文在L^1空间上,研究了种群细胞中一类具总转变规则的Rotenberg模型,讨论了这类模型相应的迁移算子生成正C0半群,并且证明了该正C0半群是不可约的等结果.
简介:讨论Curto-Fialkow所给出的四阶截断复矩问题,即给一个复数序列γ≡γ~((4)):γ_(00),γ_(0)1,γ_(10),γ_(02),γ_(11),γ_(20),γ_(03),γ_(12),γ_(21),γ_(30),γ_(04),γ_(13),γ_(22),γ_(31),γ_(40),其中γ_(00)〉0,γ_(ij)=y_(ji),找到一个正的Borel测度使得γ_(ij)=∫-izz~jdμ(0≤i+j≤4)成立;得到了四阶非奇异截断复矩矩阵M(2)的平坦延拓存在的充分必要条件及在特殊情况下的解,并举例进行了验证.