简介:利用迭合度理论的连续定理,讨论了一类中立型系统的正周期解的存在性.得到了正周期解存在的一些充分条件.
简介:随机需求库存-路径问题(StochasticDemandInventoryRoutingProblem,SDIRP)是典型的NP难题,也是实施供应商管理库存策略过程中的关键所在。文章通过引入固定分区策略(FixedPartitionPolicy,FPP),将SDIRP分解为若干个独立的子问题,并采用拉格朗日对偶理论以及次梯度算法确定最优的客户分区。在此基础上证明了各子问题的最优周期性策略由分区内各客户的(T,S)库存策略以及相应的最优旅行商路径构成,进而给出了客户需求服从泊松分布时求解最优(T,S)策略各参数的方程组,并设计了求解算法。最后,通过数值算例讨论了上述策略以及算法对于解决SDIRP的有效性。
简介:讨论了一类具有奇异系数的p-Laplace问题-Δpu-μ|u|u|x|p=u|x|tu+λuq-2u,x∈Ω,u=0,x∈Ω无穷多解的存在性,其中N≥3,Ω是RN中一有界光滑区域,0∈Ω,Δpu=-div(|▽u|p-2▽u),0≤μ〈μ=(N-p)ppp,1〈p〈N,0≤t〈p,λ〉0,1〈q〈p,p*(t)=p(N-t)(N-p)是Hardy-Sobolev临界指数利用变分原理和对偶喷泉定理,证明了该问题具有无穷多解.
简介:本文考虑一类被捕食种群为线性密度制约,捕食者种群无密度制约且具HollingⅠ型功能性反应的捕食与被捕食两种群模型 得到了系统存在极限环的必要条件,且证明了当b充分小时,系统至少存在两个极限环。
简介:采用理论分析和数值模拟相结合的方法,系统研究了尺度自适应模拟(scale-adaptivesimulation,SAS)和大涡模拟(large-eddysimulation,LES)的关联性问题.在理论分析方面,对比分析了系综平均和滤波的定义、Spalart-Allmaras(SA)湍流模型和动态亚格子(subgrid-scale,SGS)模型关于湍流黏性系数的求解方式.理论分析结果表明,系综平均等价于盒式直接滤波,SAS和LES的控制方程在数学形式上具有一致性;SAS存在过多的湍流耗散,主要来自于SA输运方程中的扩散项.在数值模拟方面,选取来流Mach数0.55,Reynolds数2×10-5的圆柱可压缩绕流为分析算例.计算结果表明,SAS和LES预测的大尺度平均流场信息几乎一致,SAS预测的湍流脉动信息略低于LES.SAS在圆柱近尾迹区的湍流耗散过大,而在稍远的尾迹区几乎能够完全等效于LES.
简介:本文研究具Balakrishnan-Taylor阻尼的Kirchhoff方程初边值问题.利用Nakao不等式,得到了解的衰减性.