简介:北京市1999年中考试题有如下特点:一、重视基本概念、基本运算、基本技能、基本联系的考查第Ⅰ卷前10题来自教材中的例、习题,变化不大,直接应用概念可得,11~19题注重计算能力、逻辑推理能力和空间想象能力的考查及重要数学思想方法的考查.如11题立足反比例函数考了待定系数法解方程;12题立足于多边形内角和定理、外角和定理,考查了方程的思想方法;13、15、17、18、19考查了函数、方程、数形结合的思想方法.二、重视综合应用数学的能力和创新能力的考查,突出了方程、函数这条中学数学的主线.第Ⅱ卷二题综合考查了特殊角三角函数值、幂运算、根式运算和矩形、中点、三角形全等概念.四题巧妙地把解直角三角形、
简介:今年上海市毕业、升学试题中的第一(19)题和第八题是一小一大的两题,小题是填空题,只有2分,大题是压轴题,有12分,然而两道题都是颇具特色的好题.第一(19)题是图形旋转重合问题,它好就好在题目所问的是“图形所在的平面上”可以作为旋转中心的点的个数,因此既应从图形中标有字母的点去找(C、D),还应从图中未标有字母的特殊点去找(CD的中点),这就需要学生不局限于标有字母的点进行全面观察.这道题小中见大,细微之处考查了学生的观察能力.第八题的(2)是一个几何探索性问题,它好就好在D是CA上的动点,而问题是探索在D的运动中,∠DOE的大小的变与不变,这就需要学生有较强的转化能力,把∠DOE转化为用已
简介:研究每个忙期中第一个顾客被拒绝服务的M/M/1排队模型的主算子在左半复平面中的特征值,证明对一切θ∈(0,1),(2√λμ-λ—μ)θ是该主算子的几何重数为1的特征值.
简介:99年成都市中考数学B卷是选拔性质的考题,具有较高的区分度,有一定难度,尤其是第四、五两题难度较大.但是只要认真分析这些题目,会感到并不是我们想象的那么困难,试题不偏、不怪,有的还很基础。只要我们注意灵活运用已学过的基础知识,便会较容易得出解答来,如第四题是一道几何证明题,采用一般的证法,除需要添加四条辅助线外,证明过程也较复杂,似乎是一道几何难题.如果我们灵活运用基础知识,并把证明过程优化一下,就只需添加两条辅助线,证明两对直角三角形相似即可.如果我们进一步把证直角三角形相似得比例线段的问题,用三角函数有关的知识去解决,具体证明如下,连结PB、PC,设∠BCP=α,∠CBP=β,则∠EBP=
简介:研究每个忙期中第一个顾客被拒绝服务的M/M/1排队模型主算子在左半复平面中的特征值,证明2√λμ-λ-μ是该主算子的几何重数为1的特征值。
简介:在其深层次机理上,港口物流系统竞争能力必受其物质技术支撑体系的制约.结合智慧港口和第五代港口基本理论,可得出深层次物质技术支撑体系主要有:物质资源禀赋、城市经济系统、物联网系统、港口经营系统、绿色效率系统等.以相关港口物流系统竞争力基本理论为指导,考虑到中国各港口的实际情况,结合数据获得的难易程度,分别从基础设施、发展环境、智慧技术、服务水平、低碳绩效五个方面遴选出18个评价指标,按照模糊信息熵理论,利用全国24个主要港口2001—2013年的原始数据,通过数学软件Matlab编程,计算出系统层指标的信息熵和权重及全国8个代表性港口2013年的竞争能力综合评价值,并以福建省福州港为例,对其进行横向比较和纵向时序分析.
简介:近年来,北京市海淀区初中毕业、升学试题都受到全国各地的重视,并作为学习、借鉴的样题,是因为每年它都有独到之处.今年突出的特点是从数学思想方法考查着眼,体现对能力的考查.其中特别表现在最后三道综合题上.第27题是含参数的一元二次方程问题,两个一元二次方程都含有参数k(第二个方程还含有参数m),都有各自不同的根的约束条件,因而在解题中必须对整数k进行分类讨论而求得k=0和k=-1,再以此进行分类讨论求得在另一个参数m的不同条件下,y21+y22的表达式,本题从分类讨论思想着眼,体现对能力的考查.第28题是圆的综合题,要求sin∠CBF,而△CBF不是Rt△,因而就需进行转化,把∠CBF转化为一个和
简介:研究一类失效状态为吸收状态及重试率为常数的M^[X]/M/1排队模型的主算子在左半实轴上的特征值,证明:当顾客的到达率λ,服务员的服务率v,服务员的服务完成率b,顾客的重试率α满足一定的条件时,-α是该主算子的几何重数为1的特征值.
简介:为了全面掌握农村会计队伍现状,进一步加强农村会计管理工作,使会计管理更好地为经济建设服务,泰安市结合深入学习实践科学发展观活动,联合市农业局农村经济经营管理站,对全市6个县市区农村财务监控中心、12个乡镇(办事处)农村会计委