简介:考虑ATM交易过程当中产生的一系列参数,如交易量、交易成功率和响应时间等,对交易状态特征进行分析并建立了异常检测模型。针对成功率与响应时间2个参数,利用聚类算法将数据点划分为正常点、疑似异常点、异常点3大类。对于疑似的异常点,再根据其时间序列周围点的分布情况确定是否确实为异常点;对于交易量参数,首先通过LOF局部离群因子对离群点进行识别,再结合交易量随时间的移动均线及标准差加以辅助筛选,得到初步的疑似异常点,进一步通过与不同天同一时刻数据进行比较,最终确定是否为异常点。根据上述模型,本文将异常情况划分为3个预警等级,并对重大故障情况进行预测。
简介:[单元目标检测]代数初步知识目标检测1.∨∨∨∨∨;∨∨∨.二、1.6a2cm2,a3cm3;2.8cm;3.x(20-x)cm2;4.y与x的平方差与x、y的积.的商5.0;6.1,(可根据条件求得x=1,y=2);7.a=1;8.48x=1200.三、1.5(a3-b3)-9,2.12(2x-y2)3.3n+1和3n+2,4.(1+4.1×12‰)a,5.1(1a+1b);6.2S(Sx+Sy)千米时,7.(1+10%)(1-5%)a吨,8.n-n4-(n4-5)四、1.x=11;2.x=3;3.x=36;4.x=4.五、1.代数式的值为219,2.原式=3×4-12(
简介:一、判断题(每小题2分,共10分).请在下列各题的括号内,正确的打“〖”,错误的打“∨”.1.am+bm+c=m(a+b)+c是因式分解.( )2.7p(p-q)-2q(q-p)=(p-q)(7p-2q).( )3.ax+ay+bx+by=(a+b)(x+y).( )4.两个等边三角形全等.( )5.若三角形的一个角等于其它两角之差,则这个三角形是直角三角形.( )二、填空题(每题3分,共30分).1.ay2-ax2=( )(x+y)(x-y).2.5(x-2)3(y-2)-3(2-x)2(2-y)=(x-2)2(y-2)( ).3.( )2+2cd2+49d4=( )2.4.三角
简介:(满分100分,90分钟完成)(/1)基础知识达标检测一、选择题(每小题4分,共40分)1.(,『1+I)x?+r,“一2+,『ii=0是关于r的一元二次方程,邶幺m的值是().({)r,j>一1(B),n>1(C)口‘≠一1(D),H≠02.方程x::x的根是().(1)()(B)l(c)2(D)0或13F列方程中,没有实数根的是().(4)!Y:一7x=0(B)5J!一7J+5=0t、C)!r?+3r一4=0(D)16,+9y=244.,f、等式Ⅲf。。’‘)’0的整数僻的个数足().L2x<5l{)1个(B)!个((j)3个(D)4个5.一啦!
简介:(满分100分,90分钟完成)(A)基础知识达标检测一、选择题(每小题4分,共40分)1.一1{的倒数是().(A)詈(引专(c)一了8(D)一i52.如果la1=一a,那么a的取值范围是().(A)a<0(B)a≤0(C)a>0(D)a≥03.化简√(I.4l一/2)j的结果是().(A)l(B)0(c)1.4l一√2(D)j!一1.414.汁算一2x·』!的结果是().(舢一』。(引一2x’(c)一4x!(D)2x。5.下列因式分解正确的是().(A)x!一5J+6=(_+I)(Y一6)-(B)x!)一”!+Ⅵ=U(1一J)(C)1一(“+6):=(1+n+b)(1n
简介:一、填空(1~5小题各3分,6~8小题各4分,9、10小题各5分,共37分)1.按角分类,三角形可分为、和.2.△ABC的边AB=6cm,AC=4cm,则第三边BC的范围是<BC<.图A-13.如图A-1,CD是△ABC的角平分线,AB=AC.若∠A=50°,则∠1=.4.在△ABC中,∠C=90°,AB=13cm,AC=5cm,则BC=cm.图A-25.如图A-2,已知线段AB,用尺规作AB的垂直平分线.(保留作图痕迹)6.等腰三角形的一个顶角比底角小30°,则它与顶角相邻的外角等于.7.如图A-3,在△ABC中,∠C=90°,AC=15cm,AB=25cm,点D是BC中点,则AD=cm.图
简介:一、填空(1~5小题各3分,6~8小题各4分,9、10小题各5分,共37分)1.三角形的内角和是,一个外角等于的两个内角的和.2.等腰三角形的周长是40cm,腰是底的2倍,则底边长cm.3.△ABC的三个内角满足∠C=∠A-∠B,则△ABC是三角形.4.如图A-14,∠A+∠B+∠C+∠D+∠E+∠F=.图A-14图A-155.如图A-15,AD是等腰Rt△ABC的角平分线,DE⊥AB于E.若CD=5cm,则BE=cm.6.等腰三角形的底角等于15°,腰的长20cm,则腰上的高是cm.7.等边三角形的边长是4cm,则它的面积是cm2.8.如图A-16,△ABC中,AB=AC,∠A=30°,BD
简介:一、填空题(每小题2分,共10分)1.x2-4=(x+2)()2.当x=时,分式x+22x+5的值为零.3.(-10)2的算术平方根是.4.a+bab=( )a2b5.计算:x2-y2xy÷(x+y)=.二、选择题(每小题3分,共9分)1.下列各式中,计算正确的是( ).①x4·x2=x8 ②x3y÷x23y2=yx③(a-b)2(b-a)2=1 ④-x-y-y-x=-1(A)1个 (B)2个 (C)3个 (D)4个2.有理式x2,2x,-13xy2,x5-zy中是分式的个数有( ).(A)1个 (B)2个 (C)3个 (D)4个3.如果x+yy=2,则xy=( ).(A)-1 (B)-2
简介:一、填空题(每小题2分,共10分)1.分解因式:2x2-132=.2.计算:ax-y-ay-x=.3.当x时,分式5xx-1有意义.4.若3x+4m=5,则m=.5.如果a2+b2-2a-4b+5=0,则2-2b=.二、选择题(每小题3分,共9分)1.下列各式中,计算正确的有( ).①ab=ambm ②-5b-6a=-5b6a③(-2xy)2=2x2y2 ④(a-b)2=(b-a)2(A)1个 (B)2个 (C)3个 (D)4个2.在公式S=12(a+b)h,已知S、b、h,则a=( ).(A)2Sh-b (B)2Sh+b(C)h2S-b(D)h2S+b3.下列多项式中,不能用完全平方公式分解
简介:一、填空(每空2分,共30分)(1)在△ABC中:∠C=90°,a=12,b=9,则sinA=,ctgA=.(2)在△ABC中,∠C=90°,sinA=45,AB=10,那么BC=,cosB=.(3)已知cos54°36′=0.5793,查表求得同一行中它的修正值是5,则cos54°34′=.(4)用“<”号连结下列各数:sin30°,tg45°,ctg90°,cos45°,ctg60°,cos30°:.(5)化简:(sin60°-1)2+|1+cos30°|=.(6)在△ABC中,∠B是锐角,sinB=22,则∠B=.(7)在Rt△ABC中,∠C=90°,sin(90°-A)=34,则cos