简介:文章通过有界可逆算子,引入了Hilbert空间中控制连续框架概念,并给出控制连续框架的一些基本性质.控制连续框架是控制框架和连续框架的推广,它具有很多类似于连续框架的性质.另外,文章应用算子论的方法,讨论了控制连续框架的扰动性,且表明连续框架或Bessel集在一定条件下为控制连续框架,控制连续框架在一定条件下为连续框架.
简介:
简介:引入并研究了Banach空间X中的Bessel集、广义框架与广义Riesz基.对X中的任一Bessel集{gm}m∈M,定义有界线性算子T:L^2(P)→X^*,利用算子丁,给出了Bessel集与广义框架的等价刻画.同时讨论了广义框架和广义Riesz基的摄动.
简介:在Hilbert空间中定义了K-g-框架,研究了Hilbert空间中K-g-框架扰动的稳定性,利用分析与框架理论上的方法和技巧,得到了K-g-框架满足扰动稳定性的一些充分条件,所得的结论推广了g-框架扰动稳定性的相关结果.
简介:利用算子理论方法,建立了Hilbert空间中Parseval框架和一般框架的新型不等式,所得结果在结构和形式上不同于已有的结果.
简介:本文在空间X_K~(r,q)中研究三维带有科氏力的不可压缩流体Navier-Stokes方程(αu)/(αt)-Δu+ωe_3×u+(u·▽)u+▽q=f(x,t)∈R~3×Rdivu=0(x,t)∈R~3×R证明对于小的殆周期外力f∈BUC(R;B_(p,2)~(-s)(R~3))∩BUC(R;L~l(R~3)),该系统存在唯一的殆周期mild解.
简介:研究表明,环境审计实际上包括两个基本部分:一是对环境问题进行相对独立地审查和评价,二是参与内部的环境管理。很明显,后者是基于内部审计的角度,而前者是基于外部审计的角度。其实,强烈要求审计部
简介:HilbertC*-模上框架的框架变换的实质是将该模进行膨胀,使得该框架变换的值域存在标准正交基,以便于HilbertC*-模上不同框架之间关系的研究.受此启发,本文引入了HilbertC*-模上框架(强)可补的概念,给出并证明了HilbertC*-模上有限个框架(强)可补的充要条件.
简介:以泛函分析的观点来考察连续小波变换及小波框架算子,得到了它们的一些性质,并给出了严格证明,弥补了有关文献中的不足.
Hilbert空间中的控制连续框架
财务会计概念框架的定位
广义框架和广义Riesz基的摄动
K-g-框架扰动的稳定性
Hilbert空间中框架不等式的新形式
旋转框架下Navier-Stokes方程的殆周期解
环境审计的推行方式:一个框架的重塑
Hilbert C*-模上框架(强)可补的充要条件
连续小波变换及小波框架算子的一些性质