简介:针对传统基于g信息的粗对准的捷联惯导系统中,受传感器噪声的影响,存在效视运动无法提取和双向量共线的缺点,提出了一种基于改良Kalman滤波的参数辨识粗对准方法。该方法通过构建视在重力在初始载体系中的映射模型,利用改良Kalman滤波进行模型参数辨识,然后通过识别参数重新构建视在重力在初始载体系中的映射,解决了由于传感器噪声导致有效视运动无法正常提取的缺点。利用识别参数具有随估计次数增多得到优化的特点,构造初始时刻和最终时刻向量,避免双向量共线问题。利用改良Kalman滤波算法的自适应特点,优化参数识别精度与速度。转台实验表明,采用改良Kalman滤波方法航向对准精度为-0.0414°,标准差为0.041°,而传统RLS方法得到的航向精度为-0.0738°,标准差为0.128°。由此可知,本文提出的方法性能更优。
简介:Unscented卡尔曼滤波(UKF)是一种新的非线性滤波算法,将其引入到GPS/DR系统的滤波中,并针对系统模型的特点对原UKF算法进行了简化,建立了新的滤波方法.仿真结果表明,同EKF相比,UKF的滤波精度和稳定性都显著提高了,还可避免计算烦琐的Jacobi矩阵,真正实现了低成本、高精度的导航定位要求.
简介:针对Kalman滤波器在捷联惯导系统(SINS)初始对准中的应用,系统分析了Kalman滤波器参数(包括估计误差协方差阵初值P0,模型噪声方差阵Q和量测噪声方差阵R)选取对系统状态变量的估计精度和收敛速度的影响。采用协方差性能分析法,进行了Kalman滤波器参数优化仿真,仿真结果表明:调整扁的取值可改变状态变量估计的收敛速度,调整Q或R的取值,既可改变状态变量(尤其是陀螺误差)的收敛速度又可改变它们的估计精度。综合考虑时,局的取值要比真实值大一些,Q和R的取值要比真实值小一些,这样既可缩短陀螺误差和加速度计偏置误差的估计时间,又可提高它们的估计精度。文中还给出了使滤波器正常可靠工作的P0、Q和R参数的范围。
简介:—本文介绍了INS/SAR(合成孔径雷达)组合导航系统中的误差修正原理和方法,描述了如何获得观测量和构造INS/SAR组合滤波器。给出的仿真结果证明,这种修正方法能大大提高导航精度,并且具有很强的初始捕获和对准能力。
简介:研究翼型绕流的转捩预测方法,对于翼型流动细节的精确模拟和气动力的准确计算以及精细化设计均具有十分重要的意义.采用动模态分解(dynamicmodedecomposition,DMD)代替线性稳定性理论(linearstabilitytheory,LST)与e^N方法结合,不需要求解稳定性方程,成为一种数据驱动的翼型边界层转捩预测新方法,称为DMD/e^N方法.在原有方法的基础上,改进了DMD网格线生成方法和扰动放大N因子的积分策略,并将RANS求解器与改进的DMD/e^N方法进行耦合,实现了翼型定常绕流转捩预测自动化.采用该方法对LSC72613跨声速自然层流翼型以及NLF0416低速自然层流翼型在不同攻角下的绕流进行转捩预测,转捩点计算结果均与实验值和LST/e^N方法吻合良好.该方法计算得到的N值增长曲线与LST/e^N方法的包络线也较为吻合,进一步验证了积分策略的正确性.改进的DMD/e^N方法可作为自然层流翼型设计的新的有力工具.
简介:基于计步的传统航位推算的手机导航方法要求手机保持相对人体固定位置以保证航向的准确性,该要求严重影响了用户体验。针对行人的手机姿态改变和高精度定位的行人导航需求,提出了一种重力辅助和模拟零速修正的航向补偿方法。手机姿态发生改变时候的航向角度补偿可以采用手机重力计输出数据进行辅助判断;通常脚部捆绑式惯性导航定位中采用的航位推算技术无法应用于行人手持的手机,所以不具备零速修正算法的基本条件,为此提出了一种应用于行人手持手机的模拟零速修正算法,通过检测行人步态,采用卡尔曼滤波有效抑制了手机的航向发散。行人的综合行走实验结果表明,基于重力辅助和模拟零速修正的手机航向修正方法,能够自主判断并补偿由于手机使用方式改变造成的航向误差,在行走196m距离的情况下,行走误差仅有1.2%,有效提高了行人定位精度。