简介:【摘要】:利用图形的性质,使一些关于数的问题形象化、直观化,从而易于获解,避免了复杂的计算与推导,这是数形结合的一个重要方面。本文通过以“代数”为例,借助于数轴、单位圆、函数图象、复数的意义、数式的结构特征,这几种常见的解题方法来体会数形结合思想。
简介:听谓逆向思维就是在研究问题的过程中,有意去做与习惯思维方向相反的探索。逆向思维主要表现在所学知识的逆应用上,有些题目的“难”与“巧”就在于对知识的逆应用。因此,注重知识的逆应用常常可使解题变得由繁到易。数学概念的定义都具有可逆性,再加上诸多的可逆公式、可逆法则,因而逆向思维在数学解题中起着非常重要的作用。一、概念定义的逆用有些定义同定理一样用“如果……那么……”的形式出现,但是,它与定理却完全不一样,定理的逆命题不一定真,而定义却有可逆的两面。例如,课本中给出的圆的定义:“圆是平面内到定点的距离等于定长的点的集合。”而它的反面:“圆的内部是到定点的距离小于定长的点的集合,圆的外部是到定点的距离大于定长的点的集合。”也是正确的。由这种思维方法可以解决下面的问题。(例一)任意剪六个圆形纸片放在桌面上,使得没有一个纸片的中心落在另一纸片上或被另一纸片盖住,然后用一枚针去扎这些纸片,证明不论针尖在哪一点,总不能一次把六个纸片都扎中。