简介:一、填空题1.某数的12比它的3倍小4,则这个数为.2.当x=时,代数式x-1与2x-14相等.3.单项式3a2+xb4与-12a5b2(y-3)是同类项,则x=,y=.4.在公式S=12(a+b)h中,S=120,h=15且b=2a,则a=.5.填出解方程0.1-0.2x0.3=1-0.01x-0.020.06各步的依据:解 1-2x3=1-x-26( )2(1-2x)=6-(x-2)( )2-4x=6-x+2( )-4x+x=6+2-2( )-3x=6( )x=-2( )6.三个连续奇数的和为105,则三个数为.7.某人从甲地到乙地,原计划用6小时,因任务紧急,每小时比原速多行
简介:“最近发展区”这一概念是由前苏联教育家维果茨基首先提出的,它是指学生现有水平和潜在发展水平之间的最小差异区域.所谓现有水平,是由已完成的发展系统形成的学生心理机能的发展水平,表现为学生能够独立地、自由地完成教师提出的智力任务.潜在发展水平,是那些尚处于形成状态,表现为学生还不能独立完成,但在教师的帮助下,通过自己的努力所能达到的较高一层的智力发展区.简单来说,“最近发展区”就是:如果你现在站在的是“已有知识”的草坪上,树上的桃子是你“将要学会的知识”,而桃子生长的地方,你站着是摘不着的,其间有个区域就是“最近发展区”.要摘下桃子,必须跳一跳,至于需要跳多高,则因人而异.
简介:一、一元选择题(每小题3分,共30分)1.(m2-m-2)x2+mx+2=0是关于x的一元二次方程,则m的取值范围是( )(A)m≠-1 (B)m≠2(C)m≠-1且m≠2 (D)m≠02.关于x的方程(m-2)x2+(1-2m)x+m2-4=0有一个根是零,则m的值应是( )(A)12 (B)-2 (C)2 (D)±23.方程x(x+2)=2(x+2)的解是( )(A)x=2 (B)x=2或x=-2(C)x=-2 (D)无解4.方程2(m-1)x+1=(|m|-1)x2,只有一个实根x,则m=( )(A)-1 (B)0 (C)1 (D)125.已知a、b、c为任意实数,则方程x2-(a+b)
简介:运用Hadmard反函数定理讨论了一类满足渐近非一致性条件的常微分方程组解的存在唯一性,推广了已有结果.
简介:一、填空题(每小题2分,共24分)1.在数轴上,到原点的距离等于3的点,它所对应的有理数是.2.绝对值等于4的有理数是,绝对值小于112的整数有个.3.当x<-7时,代数式|x+7|-|1-x|的值是.4.一项工程,甲队单独做a天完成,乙队单独做b天完成,两队合做需天完成.5.用代数式表示“a、b两数的平方和除以a、b两数差的平方的商”是.6.有理数a,b,c,d,在数轴上的位置如右图,在下面线上分别填入“>”,“=”或“<”号.(1)a的相反数b的相反数.(2)c的相反数a.(3)a的绝对值与c的绝对值的和d的绝对值.7.已知c=abR+ar,试作公式变形,则a=.8.关于x的方程x-2=0