简介:LDA主题模型是文本挖掘领域的重要算法,同时在推荐系统当中也有不错的表现.通过LDA主题模型挖掘用户感兴趣的主题,是目前最常用的用户兴趣主题挖掘方法之一.为了提高LDA主题模型应用在推荐系统时的推荐质量,我们提出了一种基于负样本进行学习的方法negLDA.通过创造出负样本来学习用户对物品的负面预测评分,同时结合正样本学习得到的正面预测评分,从正反两个方面进行综合评测,从而更加精确地衡量出用户对物品的预测评分.通过在MoviesLens-100k、MovieLens-1M、FilmTrust这三个数据集上的实验,表明所提出的算法在精确率、召回率、AUC三个指标上相比传统算法均有一定改进.
简介:为解决工业机器人标定中存在的成本昂贵、专业性强等问题,提出了一种基于几何约束的工业机器人运动学参数闭环标定法.首先采用D—H模型与MDH模型相结合的方法建立运动学模型.解决D-H模型的奇异性问题.其次,用Matlab对该方法进行仿真,机器人末端执行器上模拟安装一个激光器,将激光瞄准观测平面上一正方形的四个顶点,得到较精确的关节角.最后,根据正方形的几何性质建立标定方程,利用最小二乘法求解参数误差.此方法操作简单,成本低,易于测量,可避免机器人基座标系的校准工作.根据仿真结果。工业机器人绝对定位精度提高了77.87%,从而验证了该方法的有效性.
简介:场景锁定技术是视频跟踪领域的一个关键技术,需要对图像的全局运动进行估计,常用的运动估计算法由于计算量大、对噪声敏感等因素很难得到实际应用。为了减少运动估计的计算量,提高全局运动估计的精度,提出了一种基于Harris角点全局运动估计的场景锁定方法。将图像分成4×4的16个块,选取每个块中响应值最大的角点,以参考图像角点周围矩形块与待匹配图像进行匹配,然后利用RANSAC算法对角点进行一致性检测,利用最小二乘法解算全局运动参数,最后计算图像之间的累积运动。实验结果表明,该算法运动估计精度高,稳定性好,能较好地实现场景锁定。
简介:通过构建人体有限元模型,研究交通事故中儿童胸腹部生物力学响应及损伤机理,对提高汽车安全性设计具有重要意义。基于CT医学图像构建了包括胸骨、肋骨和内脏等软硬组织在内的具有详细解剖学结构的6岁儿童乘员胸腹部有限元模型,并构建了具有真实几何形状的斜方肌、外斜肌、冈下肌、肩胛下肌等肌肉组织。利用所构建的模型重构了儿童胸部碰撞尸体试验,仿真得到的胸部撞击力-变形量曲线、粘性准则(ViscousCriterion,VC)值与尸体试验结果呈现一致性,表明了该模型的有效性。对碰撞中肋骨、心脏和肺等胸部组织器官的应力应变进行了分析,结合损伤准则讨论了其损伤状况及损伤机理。