学科分类
/ 9
179 个结果
  • 简介:摘要随着信息通讯技术的创新发展,人类社会逐渐进入大数据时代,人们能够感受到来自多方位的、规模更大的信息和数据,并且通过对这些数据的分析和处理,对于其中存在的内部信息和核心价值进行挖掘。身为人类世界的重要资源,大数据逐渐成为了促进社会创新、产品升级以及经济发展的重要动力。现代社会很多领域都对计算机大数据有很强烈的需求。教育领域便是明显的代表,通过对大数据应用和教育领域的深度融合的研究,发现这是我国教育发展的现实情况和未来的发展趋势,这篇论文研究的主要内容是,在大数据基础上以及教育领域应用的理论研究和实践剖析。提出我国发展大数据教学的建议。

  • 标签: 大数据 互联网 教育
  • 简介:摘要“两学一做”学习教育在各层级党的组织有序安排,有力推进下,已经取得了实实在在的效果。习总书记要求的把全面从严治党的精神落实到每个党支部,突出问题导向确保取得实际成效这一目标基本实现。那接下来的工作重点就应该是在抓“常”和抓“长”上下功夫,从而不断深化“两学一做”学习教育,也由此进一步推动党的思想政治建设常态化。

  • 标签: 深化 学习教育 渠道
  • 简介:摘要二次设备巡检是电力系统的一项重要工作。随着技术发展,智能化巡检流程已成为发展趋势。针对巡检中设备开关状态的识别,传统的图像识别技术已不能有效解决由于二次设备复杂多样性等特征引起的问题。本文提出了基于深度学习的设备开关识别方法,借助AR技术在图像辨识、影像叠加、信息交互,智能纠错判断等方面的优势,运维人员在AR终端辅助设备的引导下,自动完成二次设备的巡检,实现全面化、智能化、规范化,提高了电力系统二次设备巡检工作效率。

  • 标签: 增强现实 电力行业 深度学习 目标检测
  • 简介:准确的电力负荷预测可以保证电力供应的稳定,降低用电成本,提高供电质量。在进行短期电力负荷预测时,考虑到时序数据的时间相关性,应用张量流深度学习框架构建了LSTM神经网络模型,对电力负荷时序数据进行回归预测。使用某省电力公司电力负荷数据进行模拟仿真,结果表明基于长短期记忆人工神经网络(Long-ShortTermMemory,LSTM)的深度学习模型在短期电力负荷预测中可以有效地预测负荷变化。

  • 标签: 短期电力负荷预测 长短期记忆神经网络 张量流 深度学习
  • 简介:摘要基于深度学习的变电站设备部件的识别,是利用深度学习的高层语义特征提取模型,构建从图像底层视觉特征到高级语义特征逐层迭代、逐层抽象的深度网络映射模型,旨在减小语义鸿沟,得到图像语义特征,然后利用全局特征预测每个位置可能的设备目标,不断进行迭代回归调整,再通过一系列的识别分析后得到最终的识别结果。该研究可以大大提高变电站设备部件识别率,从而更加针对性的进行变电站的故障检测。

  • 标签:
  • 简介:摘要针对当前《机械基础》课程的教学现状,为创新教学模式,培养符合时代潮流发展所需要的人才,深入探索“技校生《机械基础》学习的有效性”是时代的也是技校生的迫切要求,更是该课程实施的目的所在。《机械基础》作为一门基础理论课程,具有很强的理论性和实践性。因此,本文将就技校生如何更有效地学习《机械基础》进行粗浅探索与分析,并希望探讨出一些比较好的学习策略。

  • 标签: 技校 机械基础 学习 对策
  • 简介:摘要学习型党组织是党的建设重要内容,是保持党的领导能力和先进性的关键。供电企业在具体的实践过程中需要结合自身的特点,选择合适的学习型党组织建设方式,努力打造一支学习型的党支部,提升党支部的服务能力。

  • 标签: 供电企业 学习型党组织 创建 实践
  • 简介:摘要当前的深度学习方法使用在基于大型图形处理单元(GPU)的计算机上训练的卷积神经网络(CNN)非常成功。该方法的三个局限性是1)基于简单的分层网络拓扑结构;2)网络采用人工配置以达到最优效;3)神经元模型的实现在成本和功耗上都比较昂贵。在本文中,评估了使用三种不同的计算架构来解决这些问题的深度学习模型量子计算来训练复杂的拓扑结构,高性能计算(HPC)来自动确定网络拓扑结构,以及低功耗硬件的神经形态计算。由于目前量子计算机的输入尺寸限制,实验中使用MNIST数据集。结果显示了将这三种架构结合使用来解决上述深度学习限制的能力。结果表明,量子计算机可以在网络复杂度增加的情况下,在可控制的时间内找到高质量的层内连接权值;高性能计算机可以找到最优的基于层的拓扑结构;在低功耗记忆硬件中,神经形态计算机可以表示其他结构的复杂拓扑结构和权值。

  • 标签: 高性能计算 深度学习 计算平台
  • 简介:摘要当前的深度学习方法使用在基于大型图形处理单元(GPU)的计算机上训练的卷积神经网络(CNN)非常成功。该方法的三个局限性是1)基于简单的分层网络拓扑结构;2)网络采用人工配置以达到最优效;3)神经元模型的实现在成本和功耗上都比较昂贵。在本文中,评估了使用三种不同的计算架构来解决这些问题的深度学习模型量子计算来训练复杂的拓扑结构,高性能计算(HPC)来自动确定网络拓扑结构,以及低功耗硬件的神经形态计算。由于目前量子计算机的输入尺寸限制,实验中使用MNIST数据集。结果显示了将这三种架构结合使用来解决上述深度学习限制的能力。结果表明,量子计算机可以在网络复杂度增加的情况下,在可控制的时间内找到高质量的层内连接权值;高性能计算机可以找到最优的基于层的拓扑结构;在低功耗记忆硬件中,神经形态计算机可以表示其他结构的复杂拓扑结构和权值。

  • 标签: 高性能计算 深度学习 计算平台
  • 简介:摘要近年来,信息技术在社会诸多行业里得到广泛地应用,推动了语音识别技术的发展。同时,因其较强的实用性与精确性特点,得到客户的好评与称赞。在日常家居、汽车上皆装设了语音识别的系统。这种人机互交式的连接设备逐渐发展成为相关人士研究的重要课题。基于此,本文阐述了语音识别技术的含义,分析了人工智能为基础的深度语音识别的研究情况,分析了语音识别的方法,并对语音识别技术的未来前景加以探讨。

  • 标签: 人工智能 语音识别 深度学习 方法分析
  • 简介:摘要:在国有企业当中加强党建工作的力度是非常重要的,而建设学习型的党建模式也是利于国有企业发展的重要举措,需要予以此问题更多的关注。国有企业应当以学习型的党组织来带领企业员工一同成长、进步,并且以学习型的党组织建设成效来更好的激发企业员工的主人翁意识,在执行工作活动时取得新的成效。因此,本文将针对此问题进行深入分析,结合国有企业学习型党组织建设的相关特点谈谈其具体的实现途径。

  • 标签:
  • 简介:摘要当前,电压评估是电能质量的重要目标。电压水平直接影响到用户的生产安全。通过调节电网中无功功率分布来实现对电压的有效控制是保障电网安全、可靠运行的关键措施之一。本文首先分析了强化学习原理及相应的算法,然后分析了电网的关键性技术。

  • 标签: 学习理论 无功电压 优化方法
  • 简介:摘要:党的历史是共产党员的教科书,也是必修课、营养剂。我们党员干部必须切实提高认识、端正态度、摆正位置,自觉把开展党史学习教育作为当前一项重大政治任务,坚持知行合一,努力做到“学党史、悟思想、办实事、开新局”。基于此,本篇文章对知行合一推动党史学习教育走深走实进行研究,以供参考。

  • 标签: 知行合一 党史学习 教育 策略
  • 简介:摘 要:在工业革命以后二氧化碳的浓度飞升,这样一来导致了全球的温度持续升高,为了应对这一问题,全世界都在低碳转型上进行研究。我国提出了要在2030年前实现碳达峰,力争在2060年完成碳中和。从当前我国碳排方的形式来看,碳排放的推进与电力企业的转型有着密不可分的关系。特别是在我国电力系统中,煤炭排放量占比在40%以上,所以要想实现“双碳”目标最有效的方式就是将传统煤电企业的燃煤量降下来,如何在降低燃煤量的同时提升发电效率是火力发电所面临着巨大的挑战。

  • 标签: 碳达峰 碳中和 火电企业 影响与对策
  • 简介:摘要:无人机电网巡视具有区域小、背景复杂、计算量大等问题,使得其精度和实时性都很难达到。为了准确、快速地识别无人机电网巡检,对各种深度学习算法在复杂环境中的应用进行了分析,并给出了一种新的基于 YOLOv3的方法。首先选择ResNet18作为主干网络,再构造多尺度特征金字塔,并与骨干网络相结合,构成一种深度融合的电力系统监测系统,既能保证实时检测的精度,又能保证实时性。实验结果显示, YOLOv3网络的平均平均准确率(m AP)达到98.10%,较 FasterR-CNN提高6.71%;它能探测到的帧数为47.52帧,比R-CNN和FasterR-CNN快了25倍,比R-CNN快了12倍。提出的 YOLOv3网络在识别准确率和检测速度上都得到了较好的提高。

  • 标签: 无人机巡检 深度学习 YOLO v3 ResNet18 绝缘子
  • 简介:摘要:随着输变电系统的不断发展,设备状态诊断及预测技术日益重要。本文基于深度学习理论,通过对输变电系统中的设备状态数据进行分析和建模,提出一种基于深度学习的设备状态诊断及预测方法。本研究旨在为输变电系统的设备状态监测和维护提供一种可靠的技术手段。

  • 标签: 输变电系统 深度学习 设备状态诊断 预测
  • 简介:摘要:电气继电保护技术在电力系统中扮演着至关重要的角色。然而,传统的继电保护技术存在一些问题,如准确性和效率方面的局限性。深度学习技术的出现为故障预测与诊断带来了新的机遇,其在数据处理和模型训练方面具有独特优势。本文提出了基于深度学习的电气继电保护故障预测方法,通过数据准备、特征提取和模型设计,实现了更精准的故障预测与诊断。未来,深度学习在电气继电保护领域的发展将面临挑战,但也将带来更多的技术创新与应用前景。

  • 标签: 电气继电保护,深度学习,故障预测,诊断,未来发展。
  • 简介:摘要:随着电力系统复杂度的不断提高,精确的负荷预测已成为提升电力系统可靠性和效率的重要任务。深度学习技术由于其强大的非线性建模能力,逐渐成为负荷预测研究中的重要方法。本研究围绕基于深度学习的电力系统负荷预测模型优化展开,分析了深度学习方法在电力负荷预测中的应用现状、挑战及其优化策略。通过改进模型架构和优化算法,提升了预测精度和系统鲁棒性。本研究为未来电力负荷预测系统的设计提供了理论支持和实践指导。

  • 标签: 深度学习 电力负荷预测 优化分析 模型改进 预测精度
  • 简介:论述高等教育的培养目的和目标的关系,提出在民族院校的英语教学过程中要注重学生的个体差异,因材施教,改变民族院校英语教学模式统一化、单一化的倾向;积极采用现代多媒体教育技术的自主学习模式,破解当前民族院校英语教学中的困境,以保证高等教育目的和教学实践的统一。

  • 标签: 民族院校 教育目的 英语教学模式 自主学习
  • 简介:摘要学习宣传贯彻党的十九大精神,在学懂、弄通、做实上下功夫,学深悟透党的十九大精神和习近平书记的新时代中国特色社会主义思想。用习近平新时代中国特色主义思想指导实践,推动工作。始终不忘初心,坚定理想信念,全面理解党的十九大精神,不就事论事,在做实上下功夫,把工作抓紧抓实,抓出成效。

  • 标签: 学懂弄通落实 学习贯彻党的十九大精神