学科分类
/ 6
116 个结果
  • 简介:本文研究了无完美服务无等待的M/G/1排队系统的指数稳定性.首先运用预解正算子理论,证得该系统主算子和系统算子均为预解正算子.然后对主算子的谱界进行估值,并得到主算子的谱界与各修复率平均值的最小值互为相反数这一结论.进而利用共尾理论证明主算子谱界等于其增长界.最后,通过分析系统算子的谱分布,得到了系统的指数稳定性.

  • 标签: 无完美服务无等待 预解正算子 共尾 指数稳定性
  • 简介:在概率论的发展过程中,对强极限定理的研究一直占重要地位,强极限定理也一直是国际概率论界研究的中心课题之一.本文通过构造适当的非负鞅,将鞅收敛定理应用于几乎处处收敛的研究,给出了非齐次树上m重非齐次马氏链的一类强极限定理.

  • 标签: 强极限定理 马氏链 非齐次树
  • 简介:讨论变系数Euler-Bernoulli振动系统utt(x,t)+η(t)uxxxx(x,t)=0,0<x<1,0≤t≤T{u(0,t)=ux(0,t)=0,0≤t≤T-uxxx(1,t)+mutt(1,t)=-αut(1,t)+βuxxxt(1,t),0≤t≤T(1)uxt(1,t)=-γuxx(1,t),0≤t≤Tu(x,0)=u1(x),ut(x,0)=u2(x),0≤x≤1证明了该系统产生一个发展系统.

  • 标签: 变系数 发展系统 存在性 证明 振动系统
  • 简介:考虑动态输出反馈控制下Euler-Bernoulli的振动抑制问题,证明了系统算子生成的C0-半群,不指数稳定但渐近稳定.且当初值充分光滑时,利用Riesz基方法估计出系统能量多项式衰减.

  • 标签: EULER-BERNOULLI梁 稳定性 RIESZ基 动态控制
  • 简介:讨论了较为广泛的一类迭代函数方程组G(x,f(x),…,f^n(x),g(x),…,g^n(x))=0H(x,g(x),…,g^n(x),f(x),…,f^n(x)=0对任x∈J,其中J为实数轴R的连通闭子集,G,H∈C^m(J^2n+1,R),n≥2,对任一个整数m≥0,本文在较弱的条件下证明了该方程组的C^m解的存在性和唯一性。

  • 标签: 迭代函数方程组 C^M映射 函数空间 紧致凸集 不动点 存在性
  • 简介:讨论具有非线性耗散边界反馈的非均质Euler-Bernoulli的镇定问题.首先利用非线性半群理论和能量摄动方法,证明了文中所给出的非线性耗散边界反馈控制可以镇定闭环系统的能量,并导出了闭环系统的能量的衰减速度.

  • 标签: 反馈镇定 耗散 半群理论 边界反馈控制 摄动方法 非线性
  • 简介:设E[0,1]是一个零测度的闭子集。对于左端刚性固定右端简单支撑的非线性方程u^((4))(t)=f(t,u(t)),t∈[0,1]/E,u(0)=u(1)=u′(0)=u″(1)=0,证明了一个新的正解存在定理,其中允许非线性项f(t,u)是非单调的并且在t=0,t=1及u=0处是奇异的.主要工具是全连续算子的逼近定理和锥压缩锥拉伸型的Guo-Krasnoselskii不动点原理。

  • 标签: 奇异常微分方程 边值方程 正解 存在性
  • 简介:通过选择适当的Banach空间并利用Leray-Schauder非线性抉择对于含各阶导数的非线性弹性方程u(4)(t)=f(t,u(t),u′(t),u″(t),u(t)),0t1,u(0)=u′(1)=u″(0)=u(''')(1)=0.建立了一个解的存在定理.在材料力学中,该方程描述了一端简单支撑,另一端被滑动夹子夹住的弹性的形变.这个存在定理说明只要非线性项满足某种线性增长条件该方程至少有一个解.

  • 标签: 非线性弹性梁方程 边值问题 存在性
  • 简介:首先通过讨论具有可选服务和无等待空间的M/G/1排队模型的主算子生成的C0-半群的本质增长界指出0是该主算子的一级极点,然后运用残数定理证明该模型的时间依赖解指数收敛于其稳态解.

  • 标签: 时间依赖解 C0-半群 投影算子 本质增长界
  • 简介:利用一般凹算子的不动点定理研究了一类含隅角和弯矩的弹性方程,得到了单调正解的存在唯一性结果.最后给出一个典型例子说明所给结果的应用.

  • 标签: 弹性梁方程 不动点定理 单调正解
  • 简介:研究了具有扭转耦合效应的复合薄壁黎斯基的性质以及指数稳定性.首先证明该系统决定算子的预解式是紧的,且可生成群.其次,通过对该系统算子谱的渐近分析,证明了除至多有限个本征值外,其算子的谱是单重可分离的.特殊地,我们获得了自由系统的频率渐近表达式,因而利用克尔德什定理,证明了在希尔伯特状态空间中算子广义本征函数列的完备性.最后,结合黎斯基的性质及算子谱的分布证明了该系统的指数稳定性.

  • 标签: 复合薄壁梁 渐近本征值 黎斯基 指数稳定性
  • 简介:提出了一类求解带有约束的非凸二次规划的新型分支定界算法.首先。把原问题目标函数进行D.C.分解(分解为两个凸函数之差),利用次梯度方法,求出其线性下界逼近函数的一个最优值,也即原问题的一个下界.然后,利用全局椭球算法获得原问题的一个上界,并根据分支定界方法把原问题的求解转化为一系列子问题的求解.最后,理论上证明了算法的收敛性,数值算例表明算法是有效可行的.

  • 标签: 非凸二次规划 箱约束 分支定界算法