简介:针对变电一次设备状态监测中普遍存在的异常数据问题,提出了一种基于点排序识别聚类结构(OrderingPointstoIdentifytheClusteringStructure,OPTICS)的状态监测异常数据过滤算法。通过对一次设备状态监测的历史数据进行异常数据特征分析,建立了基于密度聚类的异常数据过滤机制。并以某110kV变电站一次设备变压器油色谱以及GISSF6密度微水实验为例,对该算法的异常数据检测效果进行了验证。该算法与传统异常数据过滤算法的对比试验结果表明,该算法能够准确地识别异常数据的特征,有效过滤状态监测中的异常数据,显著降低噪声干扰,从而提高数据的可靠性。
简介:摘要本文主要针对家庭智能用电管理系统用电优化算法及其应用价值展开深入研究,先提出了方案设计和功能确定、然后结合分时电价,详细论述了智能用电优化算法的改进和优化。最后借助仿真结果和分析,可以节约居民用户用电费用,将用电效率提升上来,进而充分发挥出家庭智能用电管理系统的作用,保证较高的应用价值。
简介:摘要由于受到天气、水调等因素的影响,水电站水工数据往往具有较强的周期性,但在实际应用中,部分数据由于采样周期不同,且自动化系统采集的数据存在事实上的不同步、不等长,造成分析上的困难。本文将DFT算法引入到水电站水工数据分析中,对离散数据进行分析计算,使分析不再依赖于传统的连续型数据模型,实践表明,本模型的性能达到较高水平。