学科分类
/ 2
36 个结果
  • 简介:应用数学与力学经常使用小参数摄动近似.在物理与力学中有大量保守体系的分析.保守体系的特点是保.本文指出小参数摄动法保的问题应予考虑.位移法摄动是保的,而矩阵的加法摄动则未能保.数值例题给出了对比.

  • 标签: 小参数摄动法 应用数学 位移法 辛矩阵 力学 近似
  • 简介:基于虚功原理,从平衡方程和力学边界条件出发,得到平面Stokes流的拉格朗日函数,为拉格朗日函数的选取提供了理论依据.并导出哈密顿函数,在全状态下建立了平面Stokes流的Hamilton正则方程,进而采用直接法给出了两侧边为静止壁面的解析解,并通过对单板驱动矩形空腔Stokes问题的计算说明了方法的有效性.

  • 标签: 哈密顿体系 辛几何 不可压缩Stokes流 矩形空腔
  • 简介:摄动法近似应当保.本文指出,有限元位移法自动保,有限元混合能表示也保.摄动法的刚度阵Taylor级数展开能证明保;混合能的Taylor级数展开摄动也证明了保.但传递矩阵的Taylor级数展开摄动却不能保.矩阵只能在乘法群下保,故传递矩阵的保摄动必须采用正则变换的乘法.虽然刚度阵加法摄动、混合能矩阵加法摄动与传递矩阵正则变换乘法摄动都保,但这3种摄动近似并不相同.最后通过数值例题给出了对比.

  • 标签: Taylor级数展开 数值比较 正则变换 辛矩阵 混合能 矩阵加法
  • 简介:首先利用哈密顿原理,将桥梁结构振动微分方程转化为哈密尔顿正则方程形式,然后将精细积分思想的算法引入到算法中,形成精细积分算法.在时间微段上,将非齐次项正弦/余弦化,得到了荷载识别的精细积分格式.与传统Runge-Kutta方法及荷载识别的精细积分格式相比,仿真算例表明本文算法不仅提高了识别精度,而且在长期定量计算中保持了算法的稳定性,计算结果不受积分步长的影响,因此可通过增大积分步长,缩短仿真时间,提高计算效率.

  • 标签: 荷载识别 桥梁结构 哈密尔顿系统 辛精细积分 移动荷载 Runge-Kutta方法
  • 简介:发展型偏微分方程混和有限元的求解往往需要变动的维数,不符合传递矩阵群固定维数的限制.本文按变分法的进一步发展的思路,推导了运用虚功原理解决不同维数传递矩阵群连接的原理.数值例题表明了方法的有效性.

  • 标签: 发展型偏微分方程 混和有限元积分 传递辛矩阵 不同维数的连接
  • 简介:利用平面弹性与板弯曲的相似性理论,用直接法研究几何形态下的薄板弯曲问题。当薄板对边边界条件形式不同时,将其进行降阶形成对偶方程组,再利用分离变量法把阅题转化为本征值问题求解。通过奉征函数、正交关系、展开求解等手段得到了薄板的解析解。算例表明求解的有效性与快速收敛性。

  • 标签: 板弯曲 HAMILTON体系 本征值 本征函数
  • 简介:提出了一种快速计算变截面铁木柯梁横向振动特性的方法.基于铁木柯梁理论建立的变截面梁的横向振动方程,其梁的截面参数如有效剪切面积、密度、弯曲刚度、转动惯量等沿梁轴线连续或非连续变化;首先将变截面梁等效为段均匀阶梯梁;然后基于相邻两段连接处的位移(位移、转角)和力(弯矩、剪力)连续条件,建立相邻两段模态函数间相互关系,并递推出首段段与末段模态函数相互关系,利用边界条件得到相应特征方程,使用Newton—Raphson方法计算其固有频率;最后针对梁常见边界条件,得到计算变截面铁木柯梁横向振动固有频率特征方程的具体形式.用该方法计算-变截面梁在常见边界条件下前三阶固有频率.将计算结果同有限元计算结果进行比较,验证所提方法的有效性.然后与欧拉-伯努利梁计算结果比较,验证了本文方法求解短粗梁固有频率具有更好适用性.

  • 标签: 铁木辛柯梁 变截面 固有频率 弯曲振动
  • 简介:用等效力学模型法研究了腔体充液晃动问题.在单腔体等效模型的基础上给出了腔体充液体的等效模型,并分析了液体分散到多个腔体后对飞行器带来的影响.结果表明,从频带的改善到作用力的减少等方面,一般情况下多个腔体的力学特性更有利于飞行器的动力学与控制设计.

  • 标签: 多腔充液 晃动 等效力学模型
  • 简介:体系统多点接触碰撞问题可以归结为一个将系统的动力学方程与并协性约束方程相结合的问题.针对这样一个含并协性条件的混合方程组,建立了基于LCP格式的包含碰撞/接触问题的刚体系统动力学分析框架,提出了一种基于步长评价准则的变时间步长的数值求解策略,实现了无摩擦情况下刚体系统多点接触碰撞问题的数值算法.最后给出了数值算例,验证了算法的有效性.

  • 标签: 多体动力学 接触碰撞 LCP方法
  • 简介:研究了受到打击的空间刚体系统考虑库仑摩擦时动力学的求解方法.在引入新的无量纲的时间参数后,通过建立相应的动量-冲量的一阶微分方程,将在趋近于零的冲击区间的讨论变为在有限区间中来分段研究含滑动-粘滞的冲击过程,得到了受到打击的空间离散系统考虑库仑摩擦时的动力学的求解方法.

  • 标签: 空间多刚体系统 冲击问题 空间离散系统 动力学
  • 简介:描述了振动声系统建模技术的基本概念.根据域分解的连续性条件,讨论了界面的压力和速度连续以及阻抗连续,应用加权余量法推导了两者的耦合模型.并用LMS/SYSNOISERev5.5进行了有限元数值模拟,计算结果与有限元结果符合得较好.通过比较两种连续性条件,发现前者更适合较小的计算模型而后者更适合较大的计算模型.最后对域分解提出了几个简单优化原则.

  • 标签: 声学 多域 域分解 Trefftz法
  • 简介:深入研究了单向耦合Lorenz—R~ssler系统的动力学行为,首先定性地分析了该系统,找出了该系统所有平衡点及平衡点存在和稳定的条件.再对该系统的分岔行为做了理论分析,得到该系统发生fold和Hopf分岔的条件.最后利用分岔软件对前面的理论进行验证,而且针对三个单向耦合参数的不同取值情况,从数值的角度研究了该系统的参数分岔,结果表明不同的耦合强度对于系统的动力学行为有较大的影响.

  • 标签: 耦合 平衡点 分岔 多参数
  • 简介:样品抓取与转移过程是深空探测的关键环节及必须的技术手段.本文研究了平行连杆样品抓取机构捕获样品采集器并将其转移到指定位置的动力学过程,建立了动力学方程,并通过adams软件建立了计算模型,对整个动力学过程进行了详细的分析,对后续工作的研究和设计提供了支撑.

  • 标签: 平行多连杆 样品抓取 动力学 研究
  • 简介:在实际工程领域中存在着大量接触碰撞等非连续动力学问题,现有的解决柔性体系统连续动力学过程的建模理论与方法,已经无法解决或无法很好解决这些问题.本文基于变拓扑思想,提出了附加接触约束的柔性体系统碰撞动力学建模理论;通过设计柔性圆柱杆接触碰撞实验,验证了所提出附加约束接触碰撞模型的有效性;针对柔性体系统全局动力学仿真面临时间和空间的尺度问题,提出多变量的离散方法,从而提高了柔性体系统非连续动力学的仿真效率.

  • 标签: 柔性多体系统 接触碰撞 变拓扑 数值仿真 实验研究
  • 简介:基于改进的KBM法,研究了强非线性自由度自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广,最后给出一个具体实例,得到了近似解以及相图.和数值结果比较,本文方法具有较高的精度.

  • 标签: 强非线性多自由度自治系统 内共振 近似解
  • 简介:道岔复杂的轮轨关系及其变截面特性是车辆通过道岔时引起振动甚至脱轨的关键因素.根据60kg/m钢轨18号可动心轨道岔设计布置图,在体动力学软件中建立车辆—道岔耦合系统模型,在此基础上对车辆—道岔系统模型进行验证,仿真计算车辆侧向和直向通过道岔的动力学响应.结果表明转辙器区、辙叉区轨道截面变化和轮轨型面匹配是影响车辆动力学性能的主要因素.最后,对车辆侧向通过离散轨道模型工况下的动力学响应进行仿真计算,讨论道岔轨下整体刚度和阻尼对模型动力学性能的影响,为改善车辆通过道岔时的动力学性能、道岔轨下刚度与阻尼参数匹配提供理论基础.

  • 标签: 车辆 道岔 多体动力学 动力学性能
  • 简介:为了设计结构复杂、性能优越的涡卷混沌系统,采用理论分析和数值仿真的方法,通过设计一个连续非线性函数,建立了三阶Chua系统的单方向与网格涡卷吸引子模型.在Matlab平台上,通过吸引子相图、最大Lyapunov指数、分岔图和Poincaré截面等方法,分析了涡卷Chua混沌系统的动力学特性.研究结果表明,涡卷Chua混沌吸引子具有丰富的动力学特性,仿真结果与理论分析一致,表明了涡卷Chua混沌系统设计方法的有效性和设计模型的正确性.

  • 标签: 混沌 多涡卷吸引子 CHUA电路 性能分析
  • 简介:把柔性梁的离散坐标法——有限段法扩展到规则柔性板中,视柔性板为带关节柔性(刚度、阻尼)的刚体系统,详细阐述了离散坐标法的基本思想、理论依据,采用牛顿-欧拉方法建立了动力学方程,借助通用有限元软件和动力学仿真程序验证了离散坐标法可以解决具有几何非线性变形的规则柔性板构件的体系统动力学问题。

  • 标签: 离散坐标法 柔性板 多刚体模型 动力学方程
  • 简介:本文引入自适应尺度熵的方法,并结合当前常用的经验模型分解的方法,使得数据尺度能自适应的被获取.通过从原数据中不断移除低频或高频成分,自适应尺度熵能够在“从粗糙到精细”或是“从精细到粗糙”的尺度下用样本熵估计求得.模拟结果用来确认了其有效性,同时我们将其应用到脑死亡诊断中,用来区分脑死亡病人和昏迷病人在脑电信号上的不同.

  • 标签: 脑电信号 脑死亡诊断 自适应多尺度熵 样本熵