简介:基于虚功原理,从平衡方程和力学边界条件出发,得到平面Stokes流的拉格朗日函数,为拉格朗日函数的选取提供了理论依据.并导出哈密顿函数,在全状态下建立了平面Stokes流的Hamilton正则方程,进而采用直接法给出了两侧边为静止壁面的解析解,并通过对单板驱动矩形空腔Stokes问题的计算说明了方法的有效性.
简介:利用平面弹性与板弯曲的相似性理论,用直接法研究辛几何形态下的薄板弯曲问题。当薄板对边边界条件形式不同时,将其进行降阶形成对偶方程组,再利用分离变量法把阅题转化为本征值问题求解。通过奉征函数、辛正交关系、展开求解等手段得到了薄板的解析解。算例表明辛求解的有效性与快速收敛性。
简介:提出了一种快速计算变截面铁木辛柯梁横向振动特性的方法.基于铁木辛柯梁理论建立的变截面梁的横向振动方程,其梁的截面参数如有效剪切面积、密度、弯曲刚度、转动惯量等沿梁轴线连续或非连续变化;首先将变截面梁等效为多段均匀阶梯梁;然后基于相邻两段连接处的位移(位移、转角)和力(弯矩、剪力)连续条件,建立相邻两段模态函数间相互关系,并递推出首段段与末段模态函数相互关系,利用边界条件得到相应特征方程,使用Newton—Raphson方法计算其固有频率;最后针对梁常见边界条件,得到计算变截面铁木辛柯梁横向振动固有频率特征方程的具体形式.用该方法计算-变截面梁在常见边界条件下前三阶固有频率.将计算结果同有限元计算结果进行比较,验证所提方法的有效性.然后与欧拉-伯努利梁计算结果比较,验证了本文方法求解短粗梁固有频率具有更好适用性.
简介:基于改进的KBM法,研究了强非线性多自由度自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广,最后给出一个具体实例,得到了近似解以及相图.和数值结果比较,本文方法具有较高的精度.