简介:以氨基酸组成为特征对膜蛋白的分类,忽略了序列残基之间的相关性信息,而采用传统支持向量机算法作为分类算法,在解决多类问题时会出现分类盲区问题。针对这两种情况,计算蛋白质序列的氨基酸组成、二肽组成以及6种氨基酸相关系数,将三类特征结合,作为膜蛋白序列的特征向量;同时采用模糊支持向量机作为分类器,解决了传统支持向量机在多类数据识别中的盲区问题。测试结果表明,在相同特征输入下,模糊支持向量机分类性能优于传统支持向量机;在相同分类器的情况下,氨基酸组成、二肽组成和相关系数组合的特征选择方法的分类性能优于只使用其中一类或两类特征的方法;而采取组合特征和模糊支持向量机相结合的分类策略,在独立性数据集测试中的整体预测精度达到97%,优于现有的多种分类策略,是目前最有效的膜蛋白分类方法之一。
简介:客户满意度是客户关系管理的重要内容,对其研究能帮助企业把有限的资源集中到客户最看重的特性方面。针对移动通讯客户满意度问题,建立了模糊加权支持向量机模型。通过对量化后的总体满意度和各项指标数据进行训练,获得二者之间的关系。用最优隶属度函数客观地反映出客户的满意程度大小,并且对指标的敏感系数和贡献程度进行分析。
简介:ICO(InitialCoinOfferin曲传销是一种未经批准非法公开融资和非法发售代币票券的新型金融传销模式,严重干扰金融秩序、破坏社会稳定。如何有效地实施ICO监管并对ICO进行传销定性成为经济犯罪侦查研究的重要方向之一.针对此问题.提出了一种基于支持向量机的ICO传销类罪模型.利用该模型对难以定性的ICO进行分类.从而实现对未定性的ICO进行判定.采集了180种ICO相关数据.提取出15个ICO传销类罪模型的评价指标.建立了基于支持向量机的ICO传销类罪模型.对难以定性的ICO进行分类.随后利用150组ICO数据作为支持向量机的学习样本.再对30组ICO合法性进行分类研究.实验结果表明该模型的分类结果准确率高达90%.在ICO传销类罪推定上具有良好的应用。今后.可以利用深度学习的方法对ICO的定性问题进一步分析。
简介:土壤侵蚀过程复杂,很难直接应用土壤侵蚀预报方程进行定量计算。作为一种新的机器学习算法,支持向量机在样本有限的情况下,采用结构风险最小化准则,把学习问题转化为一个二次规划问题,从而得到唯一的全局最优解。首次尝试将最小二乘支持向量机技术用于土壤侵蚀预测,并与BP神经网络的方法进行了对比,取得了较好的预测精度。
简介:为了预测某导弹陀螺漂移趋势,以该陀螺漂移角速度时间序列为对象,建立了基于支持向量回归机的预测模型。针对该预测模型的特点,提出了支持向量预选取的模型优化方法。基于ε不敏感损失函数的支持向量回归机具有稀疏性,其结构由支持向量决定。因此从训练样本集中预选出有可能成为支持向量的样本,精简样本规模是提高该类支持向量回归机训练和预测效率的有效方法。针对该类支持向量回归机从分类和回归两个角度分析了支持向量的几何特征,提出了核函数空间免疫聚类的支持向量预选取方法并用于某导弹陀螺漂移预测模型的数据预处理。仿真结果表明优化后的预测模型运算量小、建模速度快,精度高。