简介:We’llstudytheFEMforamodelforcompressiblemiscibledisplacementinporousmediawhichincludesmoleculardiffusionandmechanicaldispersioninone-dimensionalspace.Aclassofvertices-edges-elementsinterpolationoperatorinkisintroduced.Withthehelpofink(notellipticprojection),theoptimalerrorestimateinL∞(J;L2(Ω))normofFEMisproved.
简介:Anadaptivemulti-scaleconjugategradientmethodfordistributedparameterestimations(orinverseproblems)ofwaveequationispresented.Theidentificationofthecoefficientsofwaveequationsintwodimensionsisconsidered.First,theconjugategradientmethodforoptimizationisadoptedtosolvetheinverseproblems.Second,theideaofmulti-scaleinversionandthenecessaryconditionsthattheoptimalsolutionshouldbethefixedpointofmulti-scaleinversionmethodisconsidered.Anadaptivemulti-scaleinversionmethodfortheinverseproblemisdevelopedinconjunctionwiththeconjugategradientmethod.Finally,somenumericalresultsareshowntoindicatetherobustnessandeffectivenessofourmethod.
简介:Anonlinearparabolicsystemisderivedtodescribeincompressiblenuclearwaste-disposalcontaminationinporousmedia.Asequentialimplicittirne-steppingisdefined,inwhichthepressureandDarcyvelocityofthemixtureareapproximatedsimultaneouslybyamixedfiniteelementmethodandthebrine,radionuclidandheataretreatedbyacombinationofaGalerkinfiniteelementmethodandthemethodofcharacteristics.Optimal-orderconvergenceinL2isproved.Time-truncationerrorsofstandardproceduresarereducedbytimesteppingalongthecharacteristicsofthehyperbolicpartofthebrine,radionuclideandhealequalios,temporalandspatialerrorarelossenedbydirectcompulationofthevelocityinthemixedmethod,asopposedtodifferentiationofthepressure.
简介:Inthispaper,weprovetheglobalexistenceoftheweaksolutiontotheviscousquantumNavier-Stokes-Landau-Lifshitz-Maxwellequationsintwo-dimensionforlargedata.ThemaintechniquesaretheFaedo-Galerkinapproximationandweakcompactnesstheory.
简介:<正>WestudythesolvabilityoftheCauchyproblem(1.1)-(1.2)forthelargestpossibleclassofinitialvalues,forwhich(1.1)-(1.2)hasalocalsolution.Moreover,wealsostudythecriticalcaserelatedtotheinitialvalueu0,for1
简介:Anewspectralproblemisproposed,andnonlineardifferentialequationsofthecorrespondinghierarchyareobtained.Withthehelpofthenonlinearizationapproachofeigenvalueproblems,anewfinite-dimensionalHamiltoniansystemonR2nisobtained.Ageneratingfunctionapproachisintroducedtoprovetheinvolutionofconservedintegralsanditsfunctionalindependence,andtheHamiltonianflowsarestraightenedbyintroducingtheAbel-Jacobicoordinates.Atlast,basedontheprinciplesofalgebracurve,thequasi-periodicsolutionsforthecorrespondingequationsareobtainedbysolvingtheordinarydifferentialequationsandinversingtheAbel-Jacobicoordinates.
简介:TheaimofthispaperistogiveupperboundsofthenormoftheoperatorandassociatederrorforaLagrangeinterpolationproblembyC~1quadraticsplines.Thedomainisrectangularandthetype-2triangulationisnon--uniform.Moreoverthelocationofdatapointsallowsaverysimplecompationoftheinterpolant.