简介:研究了一类用于时间序列建模的混合自回归滑动平均模型,该模型是由m个ARMA分量经过混合得到的,给出了混合自回归滑动平均模型参数估计的期望极大化(EM)算法,从而得到了混合系数和分量模型的参数,通过仿真说明了其有效性。
简介:EfronandAmaripresentedaRiemanniangeometricframeworkforqurvedexponentialfamiliesandstudiedtheinformationlossandthevarianceoftheestimateusingthisframilies.InthispapproposearelativelyrumplegeometricframeworkinEuclideanspace.Basedonthisnewframework,westudyeonfidenceregiodsforcurvedexponentialfamilieswhichhavenotbeenstudiedbyEfronandAmari.TheresultsobtainedbyHamiltonetal.areextendedtocurvedexponentialfamilies.