简介:随着时代的发展,社会的进步,人们把关注的目光放到早期科学育儿的领域。幼儿珠心算教育于是应运而生。它所以被上海幼教界所接受并有普及之势,是基于对现代计算进步所付出的代价以后所进行的理性反思,以及脑科学理论的兴起对人们的及时启迪。随着人工智能日益广泛的应用,社会逐步改变劳动在社会中的地位。人工计算包括传统的珠算逐渐被电脑、计算器的计算所代替,久而久之,人脑的计算潜能也被现代化设备所埋没,更有甚者在日常生活中购买物品时离开了计算器竟连简单的加减乘除也不行,人脑的退化到了令人叹为观止的地步。于是,一些有识之士强烈地呼吁要保留并发扬传统的珠算教育这一国粹,让闲置的脑力恢复它应有的功能并创造出惊人的业绩。珠算是我国发明的,明代已流传到日本,现已几乎遍及东南亚、发展到美洲、澳洲和部分欧洲地区。各国何以如此热心引进珠算?其要旨是运用珠算的教育功能,提高学生的心算(珠心算)能力,并在提高计算能力的过程中,以此为抓手,促进学生动脑、动手、培养注意力、意志力,开发学生的智慧的潜能。使得发展智力与智力因素,相辅相成地同步进行。认识到了珠算的特殊功能,上海珠算协会便成了热心于此项事业的塑星...
简介:引进了在单位圆盘E={Z:|Z|<1}内p叶解析函数的一个新子类Mλp(n,α,A,B)(p是正整数,n>-p的任一整数,-1B<A1,-(π)/(2)<λ<(π)/(2))证明了包含关系,研究了类中函数的积分变换,给出了准确的系数估计,解决了类Mλp(n,α,A,B)的Fekete-Szeg问题.
简介:根据Cauchy—Schwarz不等式,得到了C^2(a,b])空间中函数的二阶导数的若干新积分不等式.
简介:本文讨论了强G-半预不变凸函数,它是强预不变凸函数与强G-预不变凸函数的真推广.首先,举例说明了强G-半预不变凸函数的存在性;然后,借助集合稠密性原理,获得了强G-半预不变凸函数的一个充要条件;最后,得到强G-半预不变凸函数在一定假设(在闭半连通集上)下的下确界就是函数在此集合上的最小值,所得结果推广并改进了相应文献中的结果.