简介:多目标跟踪问题是计算机视觉领域的关键研究问题之一。现有的目标跟踪算法严重依赖于目标检测器的性能,如果目标检测器的虚警率或漏警率较高,数据关联将会失败,导致目标跟踪精度不足。为此,本文提出一种基于结构化学习策略的目标身份感知网络流量技术,可在目标检测和数据关联并行化框架下有效地实现多目标跟踪。文中首先通过结构化学习为每个对象训练一个模型,并将目标跟踪问题建模为拉格朗日松驰优化问题,然后提出一种目标身份感知网络流量(TINF)技术进行结构化学习的推理。在学习期间,通过搜索使目标身份感知网络流量代价函数最小化的一组轨迹,确定最被违反约束和序列在下个时间段的最优轨迹,推断出视频片断中所有目标的最佳位置。最后,利用多种高难度数据集进行仿真实验,结果表明本文方法的性能优于其他最新算法。
简介:摘要:溺水事故在中国是一个严重的问题,每年都造成大量的死亡和伤亡,大部分溺水事故发生在水库、池塘、河流、溪边和湖泊等地。为了减少溺水死亡人数和人力成本,本文提出了一种智能化的无人救生艇,旨在改善传统救生圈存在的问题。该救生艇可以自动监测水域情况,并提供自动救援,有效提高救生效率和减少人为风险。本研究的结果将有助于改善溺水事故的预防和救援技术,保护人们的生命安全。
简介:摘要:随着船运流量的增加,也出现了相应的管理问题,例如对海上非法捕鱼、海盗行为、贩毒、非法货物运输的严厉打击,以及针对海上事故的救援。因此海域管理必须依靠船只巡航以及设备的监控、检测,形成一套实时监测系统,对我国的海洋管理具有重要的理论意义和应用价值。针对海上环境复杂多变、船舶目标检测精度不足和效率低下的问题,提出基于改进yolov5的船舶目标检测算法,在主干网络添加坐标注意力机制,以提升算法的特征提取能力;使用DIOU_Loss代替原有的损失函数,增加检测准确度和定位精度;应用GhostConv卷积,减小模型量的同时而保持精度基本不变。实验结果表明,相比与改进前的yolov5,改进算法的平均精度均值(mAP)、精准率(P)和召回率(R)分别提升了2.0%、1.7%、1.5%,验证了改进算法对船舶识别有很好的效果。
简介:摘要:复杂场景中检测交通标志对于智能导航与自动驾驶具有重要研究意义与实用价值,针对目前交通标志检测率较低的问题,本文提出了基于深度学习网络的交通标志检测系统,系统包括图像采集模块、交通标志检测模块和导航模块。其中交通标志检测模块采用最新YOLOv6网络为基础,基于重参数化结构,提升了检测准确率,通过软件界面可以在视频中实时准确的标志出交通标志。经过实验验证,本文交通标志检测系统有更高的检测准确率,具有较好的应用价值。
简介:摘要:针对目前灾害发生后的救援需求,本文开发了一款基于yolov5目标检测技术的两栖侦察设备。机载摄像头通过图传设备将灾后现场实时传递到地面工作站,运行算法对画面进行实时检测。本设备凭借自身两栖的机械优势,可以深入救援人员无法到达的区域进行勘测,帮助救援人员判断灾情,锁定被困人员的位置。目标检测效果良好,能够较好地反映实际情况,帮助救援人员快速开展救援行动。该无人机可以有效地提高灾后搜救效率,能一定程度上实现救援的智能化、信息化。
简介:摘要:复杂场景中检测交通标志对于智能导航与自动驾驶具有重要研究意义与实用价值,针对目前交通标志检测率较低的问题,本文提出了基于深度学习网络的交通标志检测系统,系统包括图像采集模块、交通标志检测模块和导航模块。其中交通标志检测模块采用最新YOLOv6网络为基础,基于重参数化结构,提升了检测准确率,通过软件界面可以在视频中实时准确的标志出交通标志。经过实验验证,本文交通标志检测系统有更高的检测准确率,具有较好的应用价值。
简介:摘要:工厂内违规吸烟可能引起重大的安全事故。为检测是否有人违规吸烟,提出一种可以快速准确检测吸烟的算法。该算法主要基于YOLOv5模型对摄像头输入的视频流进行实时处理。具体来说包含以下两个步骤:首先,选用合适的数据集,并对数据集的标注框进行优化;其次,使用decoupled head来调整模型的网络结构使其更好地适应吸烟检测场景的需求。实验结果表明,优化标注框的数据集召回率可以提升4.4,而改进后的算法相较于原始YOLOv5精确度提高3,召回率提升3.1,可以提供更高的检测准确率和更低的误报率。同时,在实际应用中,该算法具有较高的性能和稳定性,可以有效地用于工厂内吸烟检测的场景。
简介:摘要: 本文将使用改进YOLOv5s网络的PCB板缺陷检测算法,该网络基于YOLOv5s网络进行优化改造,不仅解决上述问题,还具有轻量化、鲁棒性高等优点,同时针对于PCB各类缺陷不易检测的难点,在优化后的网络中加入K-means+聚类算法,从而提高对于PCB小目标缺陷的检测精度。通过实验得出在 6 种 PCB 缺陷类型中对于漏孔类型缺陷检测精度达到 98.9%,所有类别 PCB可达 95.4%。实验结果表明,YOLOv5 算法可以满足工业生产中缺陷检测的需要。
简介:摘 要:视频采集和识别技术目前广泛运用于各个领域,赋能增效作用明显,以YOLO为代表的热门目标检测算法,支持视频检测、分割、姿势估计、跟踪和分类等全方位的视觉任务。本文设计了一种基于YOLOv8的视频识别增强系统,可以对多源实时视频和历史视频文件进行内容识别并标注增强显示,对潜在安全威胁进行预警提示,统计记录视频信息和时间标记,并提供内容检索定位功能,能够显著提高监控人员对视频的感知响应能力、统计分析能力和查询定位能力,功能丰富、适用性强,具有良好的应用前景。
简介:【摘要】植树问题这个单元的数学内容,贴近学生的生活经验,如何用模型思想来解决这一类“植树问题”,我们认为重要的是让学生经历和体验知识的形成过程,所以在课堂教学中,通过经历“唤醒经验——感知模型——构建模型——辨认模型——应用模型”这样的五个环节,同时始终沟通“线段图”与算式之间的关联,帮助学生直观理解棵树、段数、间隔数之间的关系,并自然的搭建植树问题的三个数学模型。