简介:构建了依赖于Nekrasov矩阵的严格对角占优矩阵;在引入恰当的参数的基础上,通过对对角矩阵、M矩阵、严格对角占优矩阵逆矩阵范数界的估计,得到了Nekrasov矩阵的逆矩阵范数的新界;通过数值例子说明了新估计式的有效性。
简介:惯性导航系统(INS)以其自主的工作能力广泛应用于军事武备的导航、制导与控制系统和国民经济的诸多领域.它的主要缺点是定位误差随其工作时间的增长而增大.对惯导系统的误差进行估计和补偿是在保证性能价格比的前提下,提高惯性导航系统精度的有效途径.目前,对惯导系统的误差修正均采用外信息(如GPS的输出信息)校正,即在INS工作的全部时间内,定期地利用GPS输出的速度和位置信息与INS输出的相应信息的差值作为观测量,对INS误差进行估计和补偿.Kalman滤波的方法广泛地应用于惯导系统的误差修正初始对准.本文研究了当地水平惯导系统的的误差估计和补偿问题.分析结果表明,采用Kalman滤波的方法,可以精确地估计惯导系统的误差(包括陀螺漂移和加速度计零偏),误差估计的精度高,并且估计的方差阵收敛快.