简介:摘要人脸识别技术在实际生活中应用广泛,本文首先回顾近年来人脸识别的一般方法超分辨率算法、基于稀疏表示的分类方法、基于核范数的矩阵回归方法,并分别指出现有方法的适用范围及其局限性。最后对现阶段人脸识别在实际应用中亟待解决的问题进行总结,并展望今后人脸识别研究的发展趋势。
简介:摘要:本文介绍了一种新的高效优化方法“基于教与学的优化”。该方法研究了教师对学习者的影响。与其他受自然启发的算法一样,TLBO也是一种基于总体的方法,并使用大量的解决方案来进行全局解决方案。人口被认为是一组学习者或一组学习者。TLBO的过程分为两部分:第一部分是“教师阶段”,第二部分是“学习阶段”。“教师阶段”指向教师学习,“学习者阶段”指通过学习者之间的互动来学习。
简介:Burn-in算法和AGREE算法是目前应用广泛的基于实际河网高程强迫修正的河网提取算法.该算法能有效提取出同真实河网高拟合度的模拟河网,但某些情况下,所提取的河网会产生“断裂”现象.河网“断裂”现象的产生在于实际河网栅格高程“高估”和“低估”所引起的局部流向计算错误,其中所有“低估”类以及大部分“高估”类影响都是可以通过填洼等方法加以消除的,即不会产生“断裂”问题.真正产生“断裂”的原因是:存在“高估”类河网栅格且“高估”所带来的影响无法通过填洼等操作加以消除.基于此,对Burn-in算法和AGREE算法进行修正,提出一种消除“高估”类影响的解决方案,从根本上解决河网“断裂”问题,实现程序自动化处理.渭河流域实例应用表明,改进算法可有效解决模拟河网“断裂”问题,且适用于多种基于高程的强迫修正算法.
简介:摘 要:神经网络是当今最具魅力的一个新兴学科生长点,已发展成为现代科学技术的新热点,其迅猛发展将对整个信息科学产生巨大的影响。神经网络在数学建模中的应用也非常的广泛。
简介:摘 要:鸟巢是造成铁路接触网供电中断的主要隐患之一。当前的管控手段主要依靠人工添乘和2C图像智能分析+人工判读,工作量大、劳效低、疏漏多,特别是在鸟巢爆发季,无法达到实时管控、避免接触网跳闸的目标。针对该现状,开发出一种利用YOLO v5智能识别系统,对2C数据预先标记处理,再对标记数据进行确认,可以大大提高2C数据的分析速度和效果。通过实际运用,该系统对成型鸟巢识别率达90%以上,极大地提高了分析效率,确保了接触网供电安全。
简介:摘 要:鸟巢是造成铁路接触网供电中断的主要隐患之一。当前的管控手段主要依靠人工添乘和2C图像智能分析+人工判读,工作量大、劳效低、疏漏多,特别是在鸟巢爆发季,无法达到实时管控、避免接触网跳闸的目标。针对该现状,开发出一种利用YOLO v5智能识别系统,对2C数据预先标记处理,再对标记数据进行确认,可以大大提高2C数据的分析速度和效果。通过实际运用,该系统对成型鸟巢识别率达90%以上,极大地提高了分析效率,确保了接触网供电安全。