简介:摘要:电力系统负荷预测与优化控制是电力领域中重要研究方向之一。随着电力系统规模的不断扩大和电力需求的增长,准确预测负荷变化并采取优化控制策略成为提高电力系统运行效率和可靠性的关键。本文基于机器学习方法,研究电力系统负荷预测与优化控制问题。首先,介绍传统负荷预测方法和机器学习负荷预测方法,并分析不同方法的数据预处理、特征工程、模型选择与训练等步骤。其次,探讨基于负荷预测的电力系统优化控制方法,包括预测引入优化控制策略、模型预测控制和基于强化学习的优化控制。在实验设计与结果分析部分,通过真实数据集进行负荷预测实验和优化控制实验,并进行结果比较和分析。最后,讨论研究结果的解释与分析、研究发现与贡献,以及研究的局限性和未来工作展望。本研究旨在提供一种基于机器学习的方法,以提高电力系统负荷预测准确性和优化控制效果,推动电力系统的智能化和可持续发展。
简介:摘要:随着电力市场的发展,目前大部分电力交易实时服务都建立在电力交易平台上,以提升电力市场的可靠性和实效性。实际上电力数据中心运营成本中的30%~50%是电费支出。针对电力价格预测,虽然目前已经取得了一定进展,但是各个国家电力市场适用的预测模型和方法都不尽相同,导致仍然还没有通用的电力价格预测方法和模型。这一方面是由于不同国家在地理位置、资源分布、电力生产、消费和政策上具有较大差异,另一方面是因为电力价格自身具有时间序列的性质,因此难以提出具有普适性的电力价格预测模型。为此本文以我国电力市场为例,基于公开的电力大数据,使用机器学习的方法建立电价预测模型,对电价波动、变化趋势进行建模预测。研究结果可为基于大数据技术的电力价格预测和建模提供参考。