简介:针对SINS/GPS组合导航系统中的GPS故障,结合GPS导航定位信息的特点,提出了基于改进型灰色预测的GPS故障预测模型,实现了GPS故障预测;结合SINS/GPS组合导航系统数学模型,进行了基于改进型灰色预测的SINS/GPS组合导航系统仿真。仿真结果表明,GPS位置数据预测残差小于1.5m;在GPS短暂故障期间,由预测数据取代GPS故障数据,可以有效提高SINS/GPS组合导航系统的抗干扰能力,保证其导航精度;比较GPS故障数据和预测数据,并根据故障数据的持续时间和变化特点等,可以诊断GPS故障是硬件故障还是外部干扰的影响,有助于实现GPS的故障判别与隔离。
简介:研究了多元线性模型中条件最优线性无偏预测的稳健性问题,得到了条件线性可预测变量的这种预测关于协方差矩阵具有稳健性的充要条件.
简介:为了预测某导弹陀螺漂移趋势,以该陀螺漂移角速度时间序列为对象,建立了基于支持向量回归机的预测模型。针对该预测模型的特点,提出了支持向量预选取的模型优化方法。基于ε不敏感损失函数的支持向量回归机具有稀疏性,其结构由支持向量决定。因此从训练样本集中预选出有可能成为支持向量的样本,精简样本规模是提高该类支持向量回归机训练和预测效率的有效方法。针对该类支持向量回归机从分类和回归两个角度分析了支持向量的几何特征,提出了核函数空间免疫聚类的支持向量预选取方法并用于某导弹陀螺漂移预测模型的数据预处理。仿真结果表明优化后的预测模型运算量小、建模速度快,精度高。
简介:针对具有层次或聚类数据的多水平模型能准确地反映变量间基于层次框架下的关系,并给出不同层次数据的差异性估计及跨级相关估计,为具有层次结构数据的统计建模提供了重要的研究工具,在社会学、心理学、生物医学及经济学领域具有广泛的应用价值。本文简要介绍常用的多水平线性模型和多水平Logistic模型的构建过程,重点介绍其在经济领域中的应用。同时对多水平模型的估计理论、应用软件以及发展展望进行了讨论。
简介:本文将改进的灰色GM(1,1)模型用于某油田年综合含水率的近期发展趋势研究。在平均相对误差达到最小准则下,研究了模型中的背景值参数A和边值修正项£对模型预测精度的影响。在此基础上,采用线性规划方法估计模型中的参数,基于遗传算法求解最佳背景值参数A和最佳边值修正项ε,以确保在相应的模型检验准则下预测的误差达到最小。结果表明,用改进的灰色GM(1,1)模型预测近期注水油田的综合含水率,预测值与实际值相对误差很小,预测精度很高,可以得到非常满意的结果。进一步的研究发现,改进的灰色GM(1,1)模型虽然近期预测精度很高,但研究长期的发展趋势是行不通的,为此又研究探讨了长期发展趋势模型。
简介:采用卡尔曼滤波方法进行动基座对准过程中,载体挠曲运动等因素会导致系统噪声、量测噪声的不确定性,即系统参数的不确定性。将多模型估计理论应用于捷联系统动基座对准过程中,可以有效抑制系统不确定性因素的影响。建立了捷联惯导系统误差模型和引入外部位置、速度信息的量测模型,针对对准过程中系统噪声和量测噪声不确定的情况建立了多模型自适应估计器。在同等条件下进行了单一模型对准和利用多模型估计理论进行对准的仿真比较,结果显示:基于多模型估计的对准完成后捷联系统具有更高的导航精度;由此说明,动基座对准过程中,系统参数不确定的情况下,多模型估计器有更好的适用性。