简介:意见收敛定理是主观主义概率论的一条重要定理,它表明随着证据的增加,验前概率的主观性将被验后概率的客观性所代替。意见收敛定理被看作主观概率的动态合理性原则,因而被用来解决休谟问题,即归纳合理性问题。然而,哈金有说服力地表明,意见收敛定理证明的是条件概率Pr(h/e)的收敛,而不是验后概率Pre(h)的收敛。主观主义概率论暗中接受的一个等式是:Pre(h)=Pr(h/e),通常称之为“条件化规则”。这样,归纳法的合理性问题变成条件化规则的合理性问题。为此,本文提出一个新的合理性原则,即“最少初始概率原则”,将它同“局部合理性”观念结合起来便可为条件化规则的合理性加以辩护。
简介:利用Rolle微分中值定理和推广的Grace定理,获得了一些新的二重积分中值定理和复函数积分中值定理,推广和改进了积分型Cauchy中值定理和二重积分中值定理.
简介:通过引入Lebesgue积分与Riemann积分的关系,仔细比较两个积分的优越性,进而详细地阐述了Lebesgue控制收敛定理的证明及其应用。首先给出了Lebesgue控制收敛定理并对其进行证明,其次再举例说明其基本的应用,最后,指出该定理的不足之处并给出条件稍宽松的定理,从而可为解题带来便利,为理解并掌握Lebesgue控制收敛定理及应用提供指导。
简介:《实变函数论》中有很多定义、定理比较难理解,凭直观又无法想象出来。有时候有些定理看似没有联系,但是它们之间却存在着紧密联系。本文证明了在法都(Fatou)引理成立的条件下勒贝格控制收敛定理也是成立的,从而得到勒贝格控制收敛定理、列维(Levi)定理、法都(Fatou)引理三者之间的等价性。