简介:以SINSiGPS组合导航系统为背景,在对Kalman滤波原理和工程应用进行深入分析的基础上,总结了该方法的不足,提出了应用神经网络和模糊推理技术对系统噪声、观测噪声和其相关阵进行直接调控的方法。该方法根据新息和新息方差的变化,实时调整自适应因子,间接改变Kalman滤波器的当前观测量和过去信息的比例关系。仿真结果表明,该算法对模型和噪声干扰有较强的自适应性,能够有效抑制滤波发散,在不损失原有精度的前提下,提高了系统的鲁棒性。
简介:投资者进行投资实践时无不面临着背景风险。绝大多数以均值方差为框架的投资组合并没有考虑背景风险,其效用在实际应用中容易受到背景风险的影响。本文在含有交易费用的双目标函数模型中引入背景风险,从是否含有背景风险和背景风险偏好度大小两方面对投资组合问题展开研究,并使用智能算法得到模型的最优解,对模型进行实证分析。实证结果表明:1)当背景风险收益为0时,含有背景风险的投资组合比不含有背景风险的投资组合更能反映真实的投资环境。2)当背景风险收益不为0时,含有背景风险的投资组合比不含有背景风险的投资组合得到更高的收益。因此,考虑背景风险后投资组合的构建优于不考虑背景风险投资组合的构建。
简介:提出一种单目视觉里程计/捷联惯性组合导航定位算法。与视觉里程计估计相机姿态不同,惯导系统连续提供相机拍摄时刻对应的三维姿态,克服了单纯由视觉估计相机姿态精度低造成的长距离导航误差大的问题。通过配准和时间同步,用惯导系统解算的速度和视觉里程计计算的速度之差作为组合导航的观测量,采用Kalman滤波修正组合导航系统的误差,同时估计视觉里程计标度因数误差。分别在室内外不同环境下进行了22m的推车实验和1412m的跑车实验,定位误差分别为3.2%和4.0%。与Clark采用姿态传感器定期更新相机姿态估计结果的方法相比,单目视觉里程计/惯性组合导航定位精度更高,定位误差随距离增长率低,适合步行机器人或轮式移动机器人在复杂地形环境下车轮严重打滑时的自主定位导航。
简介:合作学习是新课程改革倡导的一种全新理念,初中数学课堂合作教学活动是通过师生之间、学生之间多边互动,积极合作来完成教学任务的一种教学模式。结合教学实践经验,本文在实施合作教学方面作了以下探究:1、营造课堂上良好的合作气氛。2、构建合理的合作小组。3、制定合作学习的规则。4、适时有效地进行合作学习。
简介:本文介绍了SINS/GPS组合系统机载样机的工程研制及车载试验。采用经过小型化的捷联惯导系统与美国TRIMBLE公司生产的6通道TANSⅡGPS接收机进行组合。捷联惯导系统软件与组合导航系统卡尔曼滤波器计算软件共用一个机载计算机,组合系统采用12阶线性卡尔曼滤波器,并对卡尔曼滤波器的递推算法进行了工程化的处理,使滤波器的计算速度大为提高。最后,给出了组合系统的实验室静态试验及外场车载试验结果。