简介:这份报纸证明每个非可分离的世袭地不能分解的Banach空格承认一个相等的严格地凸的标准,而是它的双性人鈥揹ual永远不能有如此的一个;因而,每非鈥搒e寓言世袭地不能分解的Banach空间没局部地有等价物一致地凸的标准。空格的关键词分解-世袭地不能分解的Banach空间-renormings先生(2000)题目分类46B20-46022研究由NSFC(资助号码10471114和号码10471025)支持了
简介:LetMbeaconvexChebyshevsubsetofauniformlyconvexanduniformlysmoothBanachspace.ItisprovedthatthemetricprojectionP_MofXontoMisuniformlycontinu-ousoneveryboundedsubsetofX.Moreover,aglobalandexplicitestimateonthemodulusofcontinuityofthemetricprojectionisobtained.
简介:
简介:<正>Inthispaper,westudycompositionoperatorsonaBanachspaceofanalyticfunctions,denotedbyX,whichincludestheBlochspace.ThisspacearisesnaturallyasthedualspaceofanalyticfunctionsintheBergmanspaceL_a~1(D)whichadmitanatomicdecomposition.Wecharac-terizethefunctionswhichinducecompactcompositionoperatorsandthosewhichinduceFredholmoperatorsonthisspace.Wealsoinvestigatewhenacompositionoperatorhasaclosedrange.
简介:Utilizingthestabilitycharacterizationsofgeneralizedinversesoflinearoperator,weinvestigatetheexistenceofgeneralizedresolventoflinearpencilsinBanachspaces.Somepracticalcriterionsfortheexistenceofgeneralizedresolventsofthelinearpencilλ→TλSareprovidedandanexplicitexpressionofthegeneralizedresolventisalsogiven.Asapplications,thecharacterizationfortheMoore-Penroseinverseofthelinearpenciltobeitsgeneralizedresolventandtheexistenceofthegeneralizedresolventsoflinearpencilsoffiniterankoperators,Fredholmoperatorsandsemi-Fredholmoperatorsarealsoconsidered.Theresultsobtainedinthispaperextendandimprovemanyresultsinthisarea.
简介:InthispaperitturnsoutthataBanachlatticeXisorderisomorphictol~1(Γ)forsomenonemptysetΓiffitisaSchurspaceandalltheinfinitelydimensional,separableandclosedidealsofXareorderisomorphic.
简介:LetEbeauniformlysmoothBanachspace,KbeanonemptyclosedconvexsubsetofE,andsuppose:T:K→Kisacontinuousφ-stronglypseudocontractiveoperatorwithaboundedrange.Usinganewanalyticalmethod,undergeneralcases,theIshikawaiterativeprocess{xn}convergesstronglytotheuniquefixedpointx*oftheoperatorTwereproved.Thepapergeneralizesandextendsalotofrecentcorrespondingresults.
简介:Hahn-Banach定理,作为泛函分析三大基本定理之一应用广泛.本文介绍该定理的内容,并初步探讨其推论及其在泛函的延拓的应用.
简介:本文研究了有界相容不变性的问题.利用局部收敛的概念,给出了线性拓扑Tb的一些性质,由此获得了Banach-Mackey性质的若干新特征.
简介:LetXbeacomplexBanachspacewithouttheanalyticRadon-Nikodymproperty.TheauthorshowsthatG={f∈H∞(D,X):thereexistse>0,suchthatforalmostallθ∈[0,2π],limsup‖f(rei)-f(sei)‖>∈}isadenseopensubsetofH(D,X).Itisalsoshownr,s↑1thatforeveryopensubsetBofT,thereexistsF∈H∞(D,X),suchthatFhasboundaryvalueseverywhereonBcandFhasradiallimitsnowhereonB.WhenAisameasurablesubsetofTwithpositivemeasure,thereexistsf∈H∞(D,X),suchthatfhasnontangentiallimitsalmosteyerywhereonAcandfhasradiallimitsalmostnowhereonA.