简介:Theauthorsgivetheexistenceresultstothenonlineardifferentialinclusionu'(t)∈Au(t)+F(t,ut),whereAisagangratorofequicontinuoussemigroupandFismultivalued.
简介:Itwillbedeterminedunderwhatconditionstypesofproximinalityaretransmittedtoandfromquotientspaces.Inthefinalsection,bymanyexamplesweshowthattypesofproximinalityofsubspacesinBanachspacescannotbepreservedbyequivalentnorms.
简介:Thispaperdiscussestheproblemconcerningthecontinuityandlinearityofadditivederivationofnestalgebrasonnormedspaces.ItisprovedthaterevylinearderivationofanestalgebraalgNiscontinuousprovidedthatoneofthefollowingconditionsissatisfied:(1)0+(包含)0.(2)X-(包含于)X.(3)thereexistsanon-trivialidempotnetpinalgNsuchthattherangeofpbelongstoN,Itisalsoprovedthateveryadditivederivationofanestalgebraisautomaticallylineariftheunderlyingnormedspaceisinfinitedimemnsional.
简介:Wediscusstheexistenceresultsoftheparabolicevolutionequationd(x(t)+g(t,x(t)))/dt+A(t)x(t)=f(t,x(t))inBanachspaces,whereA(t)generatesanevolutionsystemandfunctionsf,garecontinuous.Wegetthetheoremofexistenceofamildsolution,thetheoremofexistenceanduniquenessofamildsolutionandthetheoremofexistenceanduniquenessofanS-classieal(semi-classical)solution.Weextendthecaseswheng(t)=0orA(t)=A.
简介:假设S(X)是Banach空间X的单位球面,作者引进了四个新的几何参数:Jε(X)=sup{βε(x),x∈S(X)},jε(X)=inf{βε(x),x∈S(X)},Gε(X)=sup{αε(x),x∈S(X)},gε(X)=inf{αε(x),x∈S(S)},其中≤ε≤1,βε(x)=sup{min{‖x+εy‖,‖x-εy‖,y∈S(X)}},αε(x)=inf{max{‖x+εy‖,‖x-εy‖,y∈S(X)}},讨论了这些参数的性质,本文主要结果是:如果主要结果是:如果有一个ε,0≤ε≤1,使得Jε(X)<1+ε/2或gε(X)>1+ε/3,那末X有一至正规结构。
简介:WeprovideconvergenceresultsanderrorestimatesforNewton-likemethodsingeneralizedBanachspaces.TheideaofageneralizednormisusedwhichisdefinedtobeamapfromalinearspaceintoapartiallyorderedBanachspace.Convergenceresultsanderrorestimatesareimprovedcomparedwiththerealnormtheory.
简介:THEPATHWISESOLUTIONFORACLASSOFQUASILINEARSTOCHASTICEQUATIONSOFEVOLUTIONIN BANACHSPACEⅡHuYaozhong(WuhanInst.ofMath.Sci.,Chin.A...
简介:LetEandFbeBanachspacesandfnon-linearC^1mapfromEintoF.ThemainresultisTheorem2.2,inwhichaconnectionbetweenlocalconjugacyproblemoffatx0∈Eandalocalfinepropertyoff'(x)atx0(seetheDefinition1.1inthispaper)areobtained.Thistheoremincludesasspecialcasesthetwoknowntheorems:thefiniteranktheoremandBerger'sTheoremfornon-linearFredholmoperators.Moreover:thetheoremgivesrisethefurtherresultsforsomenon-linearsemi-Fredholmmapsandforallnon-linearsemi-FredholmmapswhenEandFareHilbertspaces.ThusTheorem2.2notonlyjustunifiestheaboveknowntheoremsbutalsoreallygeneralizesthem.
简介:Inthisstudy,weuseinexactnewtonmethodstofindsolutionsofnonlinear,nondifferenti-ableoperatorequationsonBanachspaceswithaconvergencestructure.ThistechniqueinvolvestheintroductionofageneralizednormasanoperatorfromalinearspaceintoapartiallyorderedBanachspace.Inthiswaythemetricpropertiesoftheexaminedproblemcanbeanalyzedmoreprecisely.Moreover,thisapproachallmvsustoderivefromthesametheorem,ontheonehand,semi-localresultsofKantorovich-type,andontheotherhand,globalresultsbasedonmono-tonicityconsiderations.Furthermore,iveshowthatspecialcasesofourresultsreducetothecorrespondingonesalreadyintheliterature.Finally>ourresultsareusedtosolveintegralequationsthatcannotbesolvedwithexistingmethods.