简介:Anewbilevelgeneralizedmixedequilibriumproblem(BGMEP)involvinggeneralizedmixedvariational-likeinequalityproblems(GMVLIPs)isintroducedandstudiedinthereflexiveBanachspaces.First,anauxiliarygeneralizedmixedequilibriumproblem(AGMEP)isintroducedtocomputetheapproximatesolutionsoftheBGMEPinvolvingtheGMVLIPs.Byusingaminimaxinequality,theexistenceandtheuniquenessofsolutionsoftheAGMEPareprovedundermildconditionswithoutanycoerciveassumptions.Byusinganauxiliaryprincipletechnique,thenewiterativealgorithmsareproposedandanalyzed,withwhichtheapproximatesolutionsoftheBGMEParecomputed.Thestrongconvergenceoftheiterativesequencegeneratedbythealgorithmsisshownundermildconditionswithoutanycoerciveassumptions.Thesenewresultscangeneralizesomerecentresultsinthisfield.
简介:研究了Lipschitz伪压缩映射的黏滞迭代方法.设E为一致光滑Bannach空间,K为E的闭凸子集,TK→K为Lipschitz伪压缩映射且其不动点集F(T)非空,f为K上的压缩映射且t∈(0,1).若黏滞迭代路径{xt},xt=(1-t)f(xt)+tTxt且对任意初始向量x1∈K,迭代序列{xn}定义为xn+1=λnθnf(xn)+[1-λn(1+θn)]xn+λnTxn,则当t→1-和n→∞时,{xt}和{xn}都强收敛于T的不动点,同时该不动点还是一类变分不等式的解.
简介:通过构造一个特殊的锥,利用锥上的不动点指数,研究了Banach空间中二阶三点奇异边值问题多个正解的存在性.
简介:在自反Banach空间中运用对偶映射方法给出闭稠定满射线性算子的集值度量右逆的表示.拓广了已有的相应结果.
简介:讨论自反Banach空间中的原——对偶锥线性优化问题的目标函数水平集的几何性质.在自反Banach空间中,证明了原目标函数水平集的最大模与对偶目标函数水平集的最大内切球半径几乎是成反比例的.
简介:1998年,王玉文,季大琴对于Banach空间中的线性算子引进了Tseng度量广义逆。文章补充说明,当空间为Hilbert空间时,Tseng度量广义逆的定义与Tseng广义逆的原始定义相同,当空间为n维欧几里德空间,T为矩阵算子,T的Moore-Penrose度量广义逆定义的(i),(ii),(iv)四个式子退化为Penrose方程。
简介:Inthispaper,weintroducetheconceptofgeneralizedg-quasi-contractionsinthesettingofconeb-metricspacesoverBanachalgebras.Byomittingtheassumptionofnormalityweestablishcommonfixedpointtheoremsforthegeneralizedgquasi-contractionswiththespectralradiusr(λ)oftheg-quasi-contractiveconstantvectorλsatisfyingr(λ)∈[0,1/s)inthesettingofconeb-metricspacesoverBanachalgebras,wherethecoefficientssatisfiess≥1.Themainresultsgeneralize,extendandunifyseveralwell-knowncomparableresultsintheliterature.