简介:设X是一致光滑的Banach空间,T:D(T)属于X→2^x是局部严格伪压缩映射且有不动点.设Q是从X到D(T)上的非扩张保核映射.任取x0∈D(T)归纳定义:xn+1=Qpл,pn∈(1-cn)xn+cnTQyn,yn∈(1-dn)xn+dnTxn.如果存在有界序列{wn}和{zn},wn∈TQyn,zn∈Txn.则{xn}强收敛于T的唯一不动点.其中数列{cn}和{dn}满足适当条件.
简介:研究可分Banach空间中一类混合型的微分—积分包含,证明了解的存在性,其单值情形改进和推广了文[1~3]中关于混合型微分—积分方程的若干存在性结果。
简介:研究了Banach空间中拟-似变分包含解的存在与逼近问题.给出了一种寻求解的新的迭代算法,建立了具混合误差的Ishikawa型迭代序列强收敛到解的充要条件.所得结果推广了一些相关的结果.
简介:研究了严格凸Banach空间中非空间凸子集上拟非扩展映象的不动点的迭代逼近问题,主要证明了:设E是严格凸Banach空间,K为E的闭凸子集,T:K→K为连续拟非扩展映象.进一步假设T(K)包含于K的一个紧子集之中,迭代地定义序列{xn}∞n=1如下:(IS)yn=(1-βn)xn+βnTxn,n≥1,xn+1=(1-αn)xn+αnTyn,n≥1,其中{αn}和{βn}满足一定的条件,则{xn}强收敛于T的某个不动点.
简介:利用范数假设条件给出了带扰动的m一增生算子的一些映射定理.其结果是:B+D R(T+C)并且int(B+D) R(T+C)的类型.其中B、D是实Banach空间X的子集,算子T:X D(T)→2~X至少是m一增生的,扰动算子C:X D(C)→X至少是紧、demi一半连续或完全连续的.这些结果推广和改进了已有文献的有关结果.
简介:在Banach空间中利用双线性连续泛函F代替内积引进了新的一类完全广义混合隐似平衡问题,引进了F强单调的概念,提出了该平衡问题的广义辅助问题,证明了广义辅助问题的收敛定理,给出了新的算法和由此算法产生的迭代序列的收敛特征.
简介:在本文中,作者研究了Banach空间中一类非线性向量拟变分不等式问题,通过引入弱放松η-α伪单调性,利用F-KKM技巧建立了相应存在性定理以及得到了解的一些特征.
简介:旨在Banach空间中研究微分包含的周期边值问题(PBVP).假设F(t,u)仅满足弱Carathèodory条件,并不使用紧性条件,然而仍证明了该PBVP的唯一解能通过迭代序列的一致极限得到,并且还给出了解的误差估计.
简介:Wediscusstheincompletesemi-iterativemethod(ISIM)foranapproximatesolutionofalinearfixedpointequationsx=Tx+cwithaboundedlinearoperatorTactingonacomplexBanachspaceXsuchthatitsresolventhasapoleoforderkatthepoint1.SufficientconditionsfortheconvergenceofISIMtoasolutionofx=Tx+c,wherecbelongstotherangespaceof(I-T)k,areestablished.WeshowthattheISIMhasanattractivefeaturethatitisusuallyconvergentevenwhenthespectralradiusoftheoperatorTisgreaterthan1andInd1T≥1.ApplicationsinfiniteMarkovchainisconsideredandillustrativeexamplesarereported,showingtheconvergencerateoftheISIMisveryhigh.