简介:Inthispaper,weinvestigatetheproblemofapproximatingsolutionsoftheequationsofLipschitzianψ-stronglyaccretiveoperatorsandfixedpointsofLipschitzianψ-hemicontractiveoperatorsbylshikawatypeiterativesequenceswitherrors.Ourresultsunify,improveandextendtheresultsobtainedpreviouslybyseveralauthorsincludingLiandLiu(ActaMath.Sinica41(4)(1998),845-850),andOsilike(NonlinearAnal.TMA,36(1)(1999),1-9),andalsoanswercompletelytheopenproblemsmentionedbyChidume(J.Math.Anal.Appl.151(2)(1990),453-461).
简介:InthispaperweprovedtheA_p-weightedinequalitiesformartingaletransformsanddifferentialsubordinationsofBanach-space-valuedregularmaringales.Wediscussedtherelationsbetweentheweightedinequalities,A_p-weightfunctionsandtheBanachspaceswhichhastheUMDpropertyorareisomorphictoHilbertspace.
简介:在一致凸的Banach空间中,采用新的证明方法研究了严格渐近伪压缩映象和渐近非膨胀映象带误差的修正的Mann和Ishikawa迭代程序的收敛性问题,不要求定义域、值域有界,且迭代系数更简单.
简介:WeobtainseveralestimatesoftheessentialnormsoftheproductsofdifferentiationoperatorsandweightedcompositionoperatorsbetweenweightedBanachspacesofanalyticfunctionswithgeneralweights.Asapplications,wealsogiveestimatesoftheessentialnormsofweightedcompositionoperatorsbetweenweightedBanachspaceofanalyticfunctionsandBloch-typespaces.
简介:设A:D(A)X→X是Banach空间X上的线性稠定的闭算子,它是X上的强连续有界线性算子半群S(t)的无穷小生成元.对于Banach空间X中的含非局部初值条件u(0)=u0+g(u)的半线性Cauchy问题:u’(f)=Au(t)+Bx(t)+f(t,u(t)),在A生成的线性算子半群S(t)是非紧,映射,和g满足一定的紧性条件,控制算子B是有界线性算子时,证明了该问题是非局部可控的.并分别在半群是紧或强连续的条件下,证明了在控制算子B和W不是有界情形时上面的非局部Cauchy问题是非局部可控的.同时给出了在偏微分方程中的可控性问题的一个应用.
简介:在本文中,研究了一致凸Banach空间中平均非扩张中映射的IBhikawa迭代的收敛问题,证明关于平均非扩张映射的Ishikawa迭代收敛定理。
简介:设E是Banach空间,T:E→2^E*是极大单调算子,T^-10≠Ф.令x0∈E,yn=(J+λnT)^-1xn+en,xn+1=J^-1(anJxn+(1-an)Jyn)n≥0,λn〉0,an∈[0,1],文章研究了{xn}收敛性.